I1S430 - Instructions for the Final Project

What are the Final Project goals?
The goals of the Final Project include:

e Make a start on a lifetime of self-directed programming projects that help you achieve
your professional and personal objectives.

e Reinforce the Python programming skills learned during the course.

e Develop greater confidence in doing programming work on your own.

e Explore learning new Python skills needed for your project.

e Develop practical experience in controlling the scope of a programming project so that
you produce a viable product by the deadline.

What kind of project can | choose?

You are free to choose from a wide range of topics that meet the project goals. Your project
might address professional interests, personal interests, or even entertainment. | have
provided links to resources in our Weekly Schedule that might help with identifying potential
projects that might be of professional interest to MSLIS program students. | have also provided
a link to my playlist on LinkedIn Learning for Python project books. Many of the projects
described in these books are likely to have either a personal or entertainment interest. Please
feel free to come to lab and discuss your project ideas and get some feedback and coaching
from me.

How big does the Final Project need to be?

The size goal for the project is that it should contain the same amount of work as 2 coding
assignments from the latter portion of the course. Most of these assignments had 4 or 5
exercises that involved small to medium-sized programs. By contrast, the Zelle Chapter 11
assignment had 2 exercises and involved a bigger, more complex, game simulation program.
These examples should give you a good idea about how big your project should be. Please feel
free to speak with me if you are having difficulty applying these guidelines in the case of your
project.

Please be aware that your project concept could easily lead to a project that is considerably
bigger than the appropriate size for a Final Project. In that case, you will need to do some
planning to select the portion of the work that you will address in the Final Project. The
remainder of the work would be left for you (or someone else) to do after the course is over.
Projects might be divided by the product features included in the scope of this project, or they
might be divided by the datasets that are processed within the scope of this project. It is okay
for your Final Project plan to represent only the first step of a multi-step process that could be
implemented in a series of projects. Please feel free to speak with me about ideas from
choosing the appropriate scope for your project.

Page 1 of 6



How should | design my software?

The design of the software that makes up your Final Project should follow the software design
approaches that we used for coding assignments during the semester. If there is functionality
that is likely to be used in more than one of your programs, create a common function that you
can place in a library module, import the function into each program that needs it, then call it.
If there are data records that need to be sorted, create a custom dataclass to hold the data
while you are sorting it. If there are practical advantages to creating automated Pytest unit
tests for your code as an alternative to manual unit test, then consider taking advantage of that
opportunity as well. At one point, | considered making Pytest automated testing the challenge
portion of this assignment. In the end, | decided to choose another challenge instead.
Nevertheless, | am interested in seeing where you find practical advantages to using automated
test code in your project.

At some point, you will need to decide how the functionality of your project solution will be
broken up into runnable programs. During the semester, we explored two alternative
approaches to this that you will want to consider adopting:

1. A Pipeline of Processing Steps: Many projects will work well when designed as a
pipeline of simple processing steps. The design of these projects is likely to resemble
that of the Jupyter Notebook coding assignment. Each processing step can be
implemented with a program that you code and test on its own in PyCharm. Finally, you
can create a Jupyter Notebook to document and implement the overall production
workflow.

2. A Complex Stand-Alone Program: The design for other projects may be more like the
game simulation program that we created in the Zelle Chapter 11 coding assignment.
While you might place some of your code into a library module, the user will be running
just one program from the command line. While these projects might include a Jupyter
Notebook to hold documentation, the user will probably not be executing the code from
the Jupyter Notebook. Instead, they will start it from the command line (or the
PyCharm simulation of the command line that we see when we run programs with
PyCharm).

As you might imagine, the design choices are many. Please feel free to discuss alternatives with
me as you work on the design your project solution.

Will I need to learn further Python skills?

You might. At this point, you have learned basic Python, and you are well equipped to learn
more. Many attractive projects might require you to master new Python packages (from the
Python Standard Library or from third party providers). A good example of the kind of libraries
that you might decide to use are those that were covered in the Severance Chapter 11 tutorial
on data organization. When your project includes learning more Python, it is both more
rewarding and bigger. It is more rewarding in that you are growing your capabilities. Yet, the
learning workload makes your project bigger. You will need to manage all the demands of your
project to make sure that you reach your main goal within your deadline. From the perspective
of finishing your project on time, learning more Python is a side goal — a worthy goal — but a

Page 2 of 6



side goal. The trick is to sign up for just enough new Python learning to allow you to tackle an
interesting project without over-committing.

What if | need to change direction?

You can expect that you will need to do some direction changing during the project. Because
this is a creative endeavor, your ideas about the details of what you are creating are likely to
evolve. Also, it is difficult to foresee all of the obstacles that will emerge along your path. The
goal is to get to a good destination that meets the requirements for the Final Project. It is okay
(and even expected) that the exact destination will shift over the life of your project. This often
leads to tough choices during the project. Please know that | am available to help coach you
through those choices.

What should be included in the deliverables for the project?

Like the coding assignments that you submitted during the semester, the main deliverable for
the Final Project assignment is a zipped-up PyCharm Project that you will submit to Canvas. To
make your work on this easier, | have created a starter version of that PyCharm project that you
can download from the Weekly Schedule. The starter file is:

e surname_givenname_is430_final_project.zip
Unzipping the starter file will yield the following PyCharm project directory:
e surname_givenname_is430_final_project

Using the Refactor > Rename feature of PyCharm, change the name of the directory and the
project to include your actual name rather than the model text provided.

The starter version of the project includes two features that you should retain in your project
and complete:

e The data subdirectory
Please place your data in this subdirectory, following the practice that we used on most
of our coding assignments.

e main_final_project_notebook.ipynb
This notebook provides a structure for the written part of your Final Project submission.
By filling out the notebook sections, you will provide us with the information that we
need to fully appreciate your work and evaluate it fairly.

The sections in the notebook contain instructions that are set in jtalic type to guide you
through completing the document. Feel free to delete these italicized instructions when
you have finished authoring your own content. That should help to make the submitted
version of the notebook more readable.

Page 3 of 6



To what extent do | need to follow specific coding practices in this project?
In the Final Project, | will be expecting you to follow the good programming practices that we
have adopted in the course. Here is a quick summary of good practices that we have covered:

e Include a Python Docstring that describes the intent of the program.

e Place your highest-level code in a function named main.

e Include a final line of code in the program that executes the main function.

e Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor. For
example, place two blank lines between the code making up a function and the code
surrounding that function.

e Choose names for your variables that are properly descriptive.

e Define CONSTANT_VALUES and use them in place of magic numbers.

e Always use f-strings for string interpolation and number formatting.

e When processing items from Python lists and tuples, unpack the values into variables
with meaningful variable names to avoid using indexed expressions in your code.

e Open all files in a WITH block to assure that they are closed before the conclusion of the
program.

e Remember that your program should behave reasonably when it is not given any input.
This might be the result of the user pressing enter at a console prompt. Or it might be
the result of the user providing an input file that is empty.

e Model your solution after the code that | demonstrate in the tutorial videos.

e Create a sub-directory named data within your PyCharm project to hold data files.

e Remember to submit all data files with your PyCharm project — including the files that
were provided as starter files to this assignment.

e All functions that are not main() should have descriptive, action-oriented names.

e All functions should be of reasonable size.

e All functions should have high cohesion, and low coupling.

e Remember to test your program thoroughly before submitting your work.

e Your code must pass all relevant test cases. Make sure that it passes tests at the
boundaries created by if, else, and elif conditions in your program (boundary value
tests).

e Use of the break statement is allowed but not encouraged.

e Use of the continue statement is forbidden.

e Regular expression patterns should be expressed as Python raw strings

e Your finished code must be refactored to meet all good program design practices
covered in this course.

e When needed, custom Python classes should be created using Python Dataclasses using
the approach demonstrated in our course.

e Where it creates a practical advantage, manual unit tests should be replaced by
automated unit tests created with Pytest.

e Python programs that will be called from a Jupyter notebook, should not run when
imported. They should only run when they have been explicitly called.

e Python programs that are called from a Jupyter notebook should not prompt the user
for input. Instead, configuration values should be set in a notebook code cell, then
passed explicitly as parameters to a called Python function.

Page 4 of 6



e Python programs that will be called from a Jupyter notebook should be unit tested using
PyCharm. This may be achieved using either manual unit testing techniques or by using
Pytest automated unit testing.

e Unit testing scenarios tested directly in PyCharm should not be repeated in the testing
of the Jupyter notebook. Testing of the Jupyter notebook code should test the
workflow that the notebook implements.

e Jupyter notebooks should not include extensive Python code placed in the notebook
code cells. When Python code in notebook code cells grows beyond the nature of
configuration code, it should be placed into a .py library module file, imported into the
notebook, then called from the notebook.

e The Python code included in the notebook should be just enough to set configuration
parameters, import Python functions that have been written and tested in PyCharm,
and call those functions.

Which technology tools should | use for the Final Project?

Use the tools that we used for coding assignments that we did during the semester. These
include Anaconda and PyCharm. If you need help identifying further tools to use during your
project, please contact me to discuss alternatives.

How do | submit the Final Project?
Follow the process that | demonstrated in the tutorial video on submitting your work. This
involves:
e Locating the properly named directory associated with your project in the file system.
e Compressing that directory into a single .ZIP file using a utility program.
e Submitting the properly named zip file to the submission activity for this assignment.

How should | name my Final Project submission files?

The starter files for this assignment were discussed earlier in these directions. Per those
directions, please rename the PyCharm directory and project to include your name. Also, there
is one Jupyter Notebook included in the starter files. While you are expected to edit that file to
describe your project submission, please do not rename the file.

Consistent with the earlier instructions on PyCharm project naming, your PyCharm project
name should have the following form:

surname_givenname_is430_final_project
If this were my own project, | would name my PyCharm project as follows:
trainor_kevin_is430_final_project

Use a zip utility to create one zip file that contain the PyCharm project directory. The zip
file should be named according to the following scheme:

surname_givenname_is430_final_project.zip

Page 5 of 6



If this were my own project, | would name the zip file as follows:

trainor_kevin_is430_final_project.zip

When is the Final Project due?
Please submit this assignment by the date and time shown in the Weekly Schedule.

Page 6 of 6



