Chapter 6

How to code
summary queries

Murach’s MySQL 4th Edition

Objectives

Applied

1. Code summary queries that use the aggregate functions AVG, SUM, MIN,
MAX, COUNT, and COUNT (*), including queries that use the WITH
ROLLUP operator and the GROUPING and IF functions.

2. Code summary queries that use aggregate window functions, including
functions that use frames and named windows.

Knowledge
1. Describe summary queries.

2. Describe the differences between the HAVING clause and the WHERE
clause.

3. Describe the use of the WITH ROLLUP operator.

4. Describe the use of the GROUPING and IF functions with the WITH
ROLLUP operator.

5. Describe the use of the aggregate window functions.

e Murach’s MySQL 4th Edition 6, Sice 2

The syntax of some common aggregate functions

AVG ([ALL|DISTINCT] expression)
SUM([ALL|DISTINCT] expression)
MIN ([ALL|DISTINCT] expression)
MAX ([ALL|DISTINCT] expression)
COUNT ([ALL |DISTINCT] expression)
COUNT (*)

BBy Murac Books Murach’s MySQL 4th Edition

C6, Slide 3

A summary query

SELECT COUNT (*) AS number of invoices,
SUM(invoice_total - payment total - credit total)
AS total due

FROM invoices

WHERE invoice_total - payment total - credit total > 0

number_of _invoices total_due
P 11 32020.42

) muraci Books Murach’s MySQL 4th Edition C6, Side 4

© 2023, Mke Murach & Associates, Inc.

A summary query with COUNT(*), AVG, and SUM

SELECT 'After 1/1/2022' AS selection date,
COUNT (*) AS number of invoices,
ROUND (AVG (invoice_ total), 2) AS avg invoice_ amt,
SUM (invoice total) AS total invoice amt

FROM invoices

WHERE invoice_date > '2022-01-01'

selection_date number_of_invoices avg_invoice_amt total_invoice_amt
b | After 112022 114 1879.74 214290.51

BBy Mvuraci Books Murach’s MySQL 4th Edition CG, Side 5

© 2023, Mke Murach & Associates, Inc.

A summary query with MIN and MAX

SELECT 'After 1/1/2022' AS selection date,
COUNT (*) AS number of invoices,
MAX (invoice_ total) AS highest invoice_ total,
MIN (invoice total) AS lowest invoice total
FROM invoices
WHERE invoice_date > '2022-01-01'

selection_date number_of invoices highest_invoice_total lowest_invoice_total
b After 1/1/2022 114 37966.19 6.00

BBy Mvuraci Books Murach’s MySQL 4th Edition CG, Side 6

© 2023, Mke Murach & Associates, Inc.

A summary query for non-numeric columns

SELECT MIN(vendor name) AS first vendor,
MAX (vendor name) AS last vendor,
COUNT (vendor name) AS number of vendors
FROM vendors

first_vendor last_vendor number_of vendors
b | Abbey Office Furnishings Zylka Design 122

) muraci Books Murach’s MySQL 4th Edition C6,Side 7

© 2023, Mke Murach & Associates, Inc.

A summary query with the DISTINCT keyword

SELECT COUNT (DISTINCT vendor id) AS number of vendors,
COUNT (vendor id) AS number of invoices,
ROUND (AVG (invoice_ total), 2) AS avg invoice_ amt,
SUM (invoice total) AS total invoice amt

FROM invoices

WHERE invoice_date > '2022-01-01'

number_of vendors number_of invoices avg_invoice_amt total_invoice_amt
P |34 114 1879.74 214290.51

BBy Mvuraci Books Murach’s MySQL 4th Edition CG, Side 8

© 2023, Mke Murach & Associates, Inc.

The syntax of a SELECT statement
with GROUP BY and HAVING clauses

SELECT select_ 1list

FROM table_ source

[WHERE search condition]
[GROUP BY group by list]
[HAVING search condition]
[ORDER BY order by list]

e Murach’s MySQL 4th Edition 6, Sice 9

A summary query that calculates

the average invoice amount by vendor

SELECT vendor_ id, ROUND (AVG(invoice_ total), 2)
AS average_ invoice amount

FROM invoices

GROUP BY vendor id

HAVING AVG(invoice_ total) > 2000

ORDER BY average_ invoice_ amount DESC

vendor_id average_invoice_amount
» 110 23978.48

72 10563.66

104 7125.34

99 6940.25

119 45901.26

122 2575.33

86 2433.00

100 2184.50
(8 rows)

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 10

© 2023, Mke Murach & Associates, Inc.

A summary query that includes
a functionally dependent column

SELECT vendor name, vendor state,
ROUND (AVG (invoice total), 2) AS average invoice amount
FROM vendors JOIN invoices
ON vendors.vendor id = invoices.vendor_ id
GROUP BY vendor name
HAVING AVG(invoice_total) > 2000
ORDER BY average_ invoice_ amount DESC

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 11

© 2023, Mke Murach & Associates, Inc.

A summary query that counts
the number of invoices by vendor

SELECT vendor id, COUNT (*) AS invoice gty
FROM invoices
GROUP BY vendor_id

vendor_id invoice gty A
P (34 2

37 3

43 1

72 2

80 2]

(34 rows)

e Murach’s MySQL 4th Edition 6, Sice 12

A summary query with a join

SELECT vendor state, vendor city, COUNT(*) AS invoice qty,
ROUND (AVG (invoice_ total), 2) AS invoice_avg

FROM invoices JOIN vendors
ON invoices.vendor id = vendors.vendor id

GROUP BY vendor state, vendor city

ORDER BY vendor state, vendor city

vendor_state vendor_city invoice_qty invoice_avg A
P |AZ Phoenix 1 662.00
CA Fresno 19 1208.75
CA Los Angeles 1 503.20
CA Oxnard 3 188.00
CA Pasadena 5 196.12 v

(20 rows)

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 13

© 2023, Mke Murach & Associates, Inc.

A summary query that limits the groups
to those with two or more invoices

SELECT vendor state, vendor city, COUNT(*) AS invoice qty,
ROUND (AVG (invoice_ total), 2) AS invoice_avg

FROM invoices JOIN vendors
ON invoices.vendor_ id = vendors.vendor id

GROUP BY vendor state, vendor city

HAVING COUNT (*) >= 2

ORDER BY vendor state, vendor city

vendor_state vendor_city invoice_qty invoice_avg "‘
» |CA Fresno 19 1208.75

CA Oxnard 3 188.00

CA Pasadena 5 196,12

CA Sacramento 7 253.00

CA San Frandsco 3 1211.04 W
(12 rows)

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 14

© 2023, Mke Murach & Associates, Inc.

A summary query with a search condition
In the HAVING clause

SELECT vendor name,

COUNT (*) AS invoice_ gty,

ROUND (AVG (invoice_ total), 2) AS invoice_avg
FROM vendors JOIN invoices

ON vendors.vendor id = invoices.vendor id
GROUP BY vendor name
HAVING AVG(invoice_ total) > 500
ORDER BY invoice_ gty DESC

vendor_name invoice_qty invoice_avg A
» |United Parcel Service 9 2575.33
Zylka Design 8 867.53
Malloy Lithographing Inc 5 23978.48
IEM 2 600.06 v

(19 rows)

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 15

© 2023, Mke Murach & Associates, Inc.

A summary query with a search condition
In the WHERE clause

SELECT vendor name,

COUNT (*) AS invoice_ qgty,

ROUND (AVG (invoice total), 2) AS invoice_avg
FROM vendors JOIN invoices

ON vendors.vendor id = invoices.vendor id
WHERE invoice_total > 500
GROUP BY vendor name
ORDER BY invoice_ gty DESC

vendor_name invoice_qty invoice_avg
» | United Parcel Service 9 2575.33

Zylka Design 7 946.67

Malloy Lithographing Inc 5 23978.48

Ingram 2 1077.21 v
(20 rows)

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 16

© 2023, Mke Murach & Associates, Inc.

A summary query with a compound condition
In the HAVING clause

SELECT
invoice_date,
COUNT (*) AS invoice_qty,
SUM (invoice_ total) AS invoice_sum
FROM invoices
GROUP BY invoice date
HAVING invoice_date BETWEEN '2018-05-01' AND '2018-05-31'
AND COUNT (*) > 1
AND SUM(invoice_ total) > 100
ORDER BY invoice_date DESC

The result set

invoice_date invoice_gty invoice_sum

» | 2022-05-31 2 453.75
2022-05-25 3 2201.15
2022-05-23 2 347.75
2022-05-21 2 8078.44
2022-05-13 3 1888.95
2022-05-11 2 5009.51
2022-05-03 2 866.87

(7 rows)

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 17

© 2023, Mke Murach & Associates, Inc.

The same query coded with a WHERE clause

SELECT
invoice_date,
COUNT (*) AS invoice_ gty,
SUM (invoice_ total) AS invoice_sum
FROM invoices
WHERE invoice date BETWEEN '2018-05-01' AND '2018-05-31'
GROUP BY invoice_date
HAVING COUNT (*) > 1
AND SUM(invoice_total) > 100
ORDER BY invoice_date DESC

The same result set

invoice_date invoice_qgty invoice_sum
P |2022-05-31 2 453.75
2022-05-25 2201.15
2022-05-23 347.75
2022-05-21 8078.44
2022-05-13 1888.95
2022-05-11 5009.51
2022-05-03 866.87

LSS I S T Y R X I N W]

(7 rows)

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 18

© 2023, Mke Murach & Associates, Inc.

A summary query with a final summary row

SELECT vendor id, COUNT (*) AS invoice count,
SUM (invoice_ total) AS invoice_ total

FROM invoices

GROUP BY vendor_id WITH ROLLUP

vendor_id invoice_count invoice_total A
119 1 4501.26
121 8 6940.25
122 9 23177.96
123 47 4378.02
L 114 214290.51 S
(35 rows)

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 19

© 2023, Mke Murach & Associates, Inc.

A summary query with a summary row
for each grouping level

SELECT vendor state, vendor city, COUNT(*) AS gty vendors
FROM vendors

WHERE vendor state IN ('IA', 'NJ')

GROUP BY vendor state, vendor city WITH ROLLUP

vendor_state vendor_cty qty_vendors
P |IA Fairfield 1
IA Washington 1
IA [2
NJ East Brunswick 2
NJ Fairfield 1
NJ Washington 1
NJ [4
[HULL | [HULL | 6

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 20

© 2023, Mke Murach & Associates, Inc.

The basic syntax of the GROUPING function

GROUPING (expression)

A summary query that uses WITH ROLLUP
on a table with null values

SELECT invoice date, payment date,
SUM (invoice_ total) AS invoice_ total,
SUM (invoice total - credit total - payment total)
AS balance due
FROM invoices
WHERE invoice date BETWEEN '2022-07-24' AND '2022-07-31'
GROUP BY invoice date, payment date WITH ROLLUP

invoice_date payment_date invoice_total balance_due
b |202207-24 503.20 503,20
2022-07-24 2022-08-19 3689.99 0.00
2022-07-24 2022-08-23 67.00 0.00
2022-07-24 2022-08-27 23517.58 0.00
2022-07-24 27777.77 503.20
20220725 2022-08-22 1000.46 0.00
2022-07-25 1000.46 0.00
2022-07-28 90.36 90.36
2022-07-28 90.36 90,36
2022-07-30 202240903 22.57 0.00
2022-07-30 22.57 0.00
2022-07-31 10976.06 10976.06
2022-07-31 10976.06 10976.06
L s 39867.22 11569.62

'.I MURACH BOOKS

© 2023, Mke Murach & Associates, Inc.

Murach’s MySQL 4th Edition

A query that substitutes literals for nulls
In summary rows

SELECT IF (GROUPING (invoice date) = 1, 'Grand totals',
invoice date) AS invoice date,
IF (GROUPING (payment date) = 1, 'Invoice date totals’',
payment date) AS payment date,
SUM (invoice_total) AS invoice total,
SUM (invoice total - credit total - payment total)
AS balance_due
FROM invoices
WHERE invoice date BETWEEN '2022-07-24' AND '2022-07-31'
GROUP BY invoice date, payment date WITH ROLLUP

invoice_date = payment_date invoice_total balance_due
» |20220724 O 503.20 503.20
2022-07-24 2022-08-19 3689.99 0.00
2022-07-24 2022-08-23 67.00 0.00
2022-07-24 2022-08-27 23517.58 0.00
2022-07-24 Invoice date totals 27777.77 503.20
2022-07-25 2022-08-22 1000.46 0.00
2022-07-25 Invoice date totals 1000.46 0.00
2022-07-28 4 90.36 90.36
2022-07-28 Invoice date totals 90.36 90.36
2022-07-30 2022-09-03 22.57 0.00
2022-07-30 Invoice date totals 22.57 0.00
2022-07-31 T 10976.06 10976.06
2022-07-31 Invoice date totals 10976.06 10976.06
Grand totals Invoice date totals 39867.22 11569.62

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 22

© 2023, Mke Murach & Associates, Inc.

A gquery that displays only summary rows

SELECT IF (GROUPING (invoice date) = 1, 'Grand totals',6 invoice_date)
AS invoice_date,
IF (GROUPING (payment date) = 1, 'Invoice date totals',
payment date) AS payment date,
SUM (invoice_total) AS invoice total,
SUM (invoice total - credit total - payment total)
AS balance_ due
FROM invoices
WHERE invoice date BETWEEN '2022-07-24' AND '2022-07-31'
GROUP BY invoice date, payment date WITH ROLLUP
HAVING GROUPING (invoice date) = 1 OR GROUPING (payment date) =1

invoice_date payment_date invoice_total balance_due
b |2022-07-24 Invoice date totals 27777.77 503.20
2022-07-25 Invoice date totals 1000.46 0.00
2022-07-28 Invoice date totals 90.36 90.36
2022-07-30 Invoice date totals 22.57 0.00
2022-07-31 Invoice date totals 10976.06 10976.06
Grand totals Invoice date totals 398567.22 11569.62

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 23

© 2023, Mke Murach & Associates, Inc.

The basic syntax of the OVER clause

OVER ([PARTITION BY expressionl [, expression2]...
[ORDER BY expressionl [ASC|DESC]
[, expression2 [ASC|DESC]]...)

A SELECT statement
with two aggregate window functions

SELECT vendor_ id, invoice_date, invoice_total,
SUM(invoice total) OVER() AS total invoices,
SUM(invoice_ total) OVER(PARTITION BY vendor id)

AS vendor total

FROM invoices

WHERE invoice_ total > 5000

vendor_id invoice_date invoice_total total_invoices vendor_total
b 72 2022-06-01 21842.00 155800.00 21842.00

99 2022-06-18 6940.25 155800.00 6940.25

104 2022-05-21 7125.34 155800.00 7125.34

110 2022-05-28 37966.19 155800.00 119892.41

110 2022-07-19 26881.40 155800.00 119892.41

110 2022-07-23 20551.18 155800.00 118892.41

110 2022-07-24 23517.58 155800.00 119892.41

110 2022-07-31 10976.06 155800.00 119892.41

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 24

© 2023, Mke Murach & Associates, Inc.

A SELECT statement with a cumulative total

SELECT vendor id, invoice date, invoice_ total,
SUM (invoice_total) OVER() AS total invoices,
SUM (invoice_ total) OVER(PARTITION BY vendor id
ORDER BY invoice total) AS vendor_ total
FROM invoices
WHERE invoice_ total > 5000

vendor_id invoice_date invoice_total total_invoices vendor_total
P |72 2022-06-01 21842.00 155800.00 21842.00

99 2022-06-18 6940.25 155800.00 6940.25

104 2022-05-21 7125.34 155800.00 7125.34

110 2022-07-31 10976.06 155800.00 10976.06

110 2022-07-23 20551.18 155800.00 31527.24

110 2022-07-24 23517.58 155800.00 55044.82

110 2022-07-19 26881.40 155800.00 81926.22

110 2022-05-28 37966.19 155800.00 119892.41

BBy Mvuraci Books Murach’s MySQL 4th Edition

© 2023, Mke Murach & Associates, Inc.

C6, Slide 25

The syntax for defining a frame

{ROWS | RANGE} {frame_ start |
BETWEEN frame start AND frame end}

Possible values for frame_start and frame_end
CURRENT ROW
UNBOUNDED PRECEDING
UNBOUNDED FOLLOWING
expr PRECEDING
expr FOLLOWING

e Murach’s MySQL 4th Edition 6, Sice 26

A SELECT statement that defines a frame

SELECT vendor id, invoice date, invoice_ total,
SUM (invoice_total) OVER() AS total invoices,
SUM (invoice_ total) OVER(PARTITION BY vendor id
ORDER BY invoice_ date
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS vendor total
FROM invoices
WHERE invoice_date BETWEEN '2022-04-01' AND '2022-04-30'

vendor_id invoice_date invoice_total total_invoices vendor_total
» |89 2022-04-24 95.00 5828.18 95.00
95 2022-04-30 16.33 5828.18 16.33
96 2022-04-26 662.00 5828.18 662.00
121 2022-04-24 601.95 5828.18 601.95
122 2022-04-08 3813.33 5828.18 3813.33
123 2022-04-10 40.20 5828.18 40.20
123 2022-04-13 138.75 5828.18 178.95
123 2022-04-16 144.70 5828.18 323.65
123 2022-04-16 15.50 5828.18 339.15
123 2022-04-16 42,75 5828.18 381.90
123 2022-04-21 172.50 5828.18 554.40
123 2022-04-24 42.67 5828.18 597.07
123 2022-04-25 42.50 5828.18 639.57

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 27

© 2023, Mke Murach & Associates, Inc.

A SELECT statement that creates peer groups

SELECT vendor id, invoice date, invoice_ total,
SUM (invoice_total) OVER() AS total invoices,
SUM (invoice_ total) OVER(PARTITION BY vendor id
ORDER BY invoice_ date
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS vendor total
FROM invoices
WHERE invoice_date BETWEEN '2022-04-01' AND '2022-04-30'

vendor_id invoice_date invoice_total total_invoices vendor_total
» |89 2022-04-24 95.00 5828.18 95.00
95 2022-04-30 16.33 5828.18 16.33
96 2022-04-26 662.00 5828.18 662.00
121 2022-04-24 601.95 5828.18 601.95
122 2022-04-08 3813.33 5828.18 3813.33
123 2022-04-10 40.20 5828.18 40.20
123 2022-04-13 138.75 5828.18 178.95
123 2022-04-16 144.70 5828.18 381.90
123 2022-04-16 15.50 5828.18 381.90
123 2022-04-16 42,75 5828.18 381.90
123 2022-04-21 172.50 5828.18 554.40
123 2022-04-24 42.67 5828.18 597.07
123 2022-04-25 42.50 5828.18 639.57

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 28

© 2023, Mke Murach & Associates, Inc.

A SELECT statement that calculates

moving averages

SELECT MONTH (invoice_ date) AS month,
SUM(invoice total) AS total invoices,
ROUND (AVG (SUM (invoice_ total))
OVER (ORDER BY MONTH (invoice_date)
RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING),
AS 3 month avg
FROM invoices
GROUP BY MONTH (invoice date)

2)

month total_invoices 3_month_avg
P |4 5828.18 32212.64
5 58597.10 39614.34
6 54417.73 69370.19
7 95095.75 49955.08
8 351.75 47723.75

BBy Mvuraci Books Murach’s MySQL 4th Edition

© 2023, Mke Murach & Associates, Inc.

C6, Slide 29

The syntax for naming a window

WINDOW window name AS
([partition clause] [order clause] [frame clause])

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 30

© 2023, Mke Murach & Associates, Inc.

A SELECT statement with four functions
that use the same window

SELECT vendor_id, invoice date, invoice_total,
SUM(lnv01ce total) OVER(PARTITION BY vendor_ id)
AS vendor total,
ROUND (AVG (invoice total) OVER(PARTITION BY vendor id), 2)
AS vendor_ avg,
MAX (invoice total) OVER(PARTITION BY vendor id)
AS vendor max,
MIN (invoice_ total) OVER(PARTITION BY vendor id)
AS vendor min
FROM invoices
WHERE invoice total > 5000

The result set

vendor_id invoice_date invoice_total vendor_total vendor_avg vendor_max vendor_min
» |72 2022-06-01 21842.00 21842.00 21842.00 21842.00 21842.00
99 2022-06-18 6940.25 6940.25 6940.25 6940.25 6940.25
104 2022-05-21 7125.34 7125.34 7125.34 7125.34 7125.34
110 2022-05-28 37966.19 119892.41 23978.48 37966.19 10976.06
110 2022-07-19 26881.40 119892.41 23978.48 37966, 19 10976.06
110 2022-07-23 20551.18 119892.41 23978.48 37966.19 10976.06
110 2022-07-24 23517.58 119892.41 23978.48 37966.19 10976.06
110 2022-07-31 10976.06 115892.41 23978.48 37966.19 10976.06

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 31

© 2023, Mke Murach & Associates, Inc

A SELECT statement with a named window

SELECT vendor id, invoice date, invoice total,
SUM (invoice total) OVER vendor window
AS vendor total,
ROUND (AVG (invoice total) OVER vendor window, 2)
AS vendor avg,
MAX (invoice total) OVER vendor window AS vendor max,
MIN (invoice total) OVER vendor window AS vendor min
FROM invoices
WHERE invoice total > 5000
WINDOW vendor window AS (PARTITION BY vendor id)

The same result set

vendor_id invoice_date invoice_total vendor_total vendor_avg vendor_max vendor_min
» |72 2022-06-01 21842.00 21842.00 21842.00 21842.00 21842.00
99 2022-06-18 6940.25 6940.25 6940.25 6940.25 6940.25
104 2022-05-21 7125.34 7125.34 7125.34 7125.34 7125.34
110 2022-05-28 37966.19 119892.41 23978.48 37966.19 10976.06
110 2022-07-19 26881.40 119892.41 23978.48 37966.19 10976.06
110 2022-07-23 20551.18 119892.41 23978.48 37966.19 10976.06
110 2022-07-24 23517.58 119892.41 23978.48 37966.19 10976.06
110 2022-07-31 10976.06 119892.41 23978.48 37966.19 10976.06

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 32

© 2023, Mke Murach & Associates, Inc.

A SELECT statement that adds to the
specification for a named window

SELECT vendor id, invoice_date, invoice_total,
SUM (invoice total)
OVER (vendor window ORDER BY invoice date ASC)
AS invoice_date_asc,
SUM (invoice total)
OVER (vendor window ORDER BY invoice_ date DESC)
AS invoice_date_desc
FROM invoices
WHERE invoice_ total > 5000

WINDOW vendor window AS (PARTITION BY vendor_id)

'.l MURACH BOOKS Murach’s MyS QL 4th Edition C6, Slide 33

© 2023, Mke Murach & Associates, Inc.

	Slide 1: Chapter 6
	Slide 2: Objectives
	Slide 3: The syntax of some common aggregate functions
	Slide 4: A summary query
	Slide 5: A summary query with COUNT(*), AVG, and SUM
	Slide 6: A summary query with MIN and MAX
	Slide 7: A summary query for non-numeric columns
	Slide 8: A summary query with the DISTINCT keyword
	Slide 9: The syntax of a SELECT statement with GROUP BY and HAVING clauses
	Slide 10: A summary query that calculates the average invoice amount by vendor
	Slide 11: A summary query that includes a functionally dependent column
	Slide 12: A summary query that counts the number of invoices by vendor
	Slide 13: A summary query with a join
	Slide 14: A summary query that limits the groups to those with two or more invoices
	Slide 15: A summary query with a search condition in the HAVING clause
	Slide 16: A summary query with a search condition in the WHERE clause
	Slide 17: A summary query with a compound condition in the HAVING clause
	Slide 18: The same query coded with a WHERE clause
	Slide 19: A summary query with a final summary row
	Slide 20: A summary query with a summary row for each grouping level
	Slide 21: The basic syntax of the GROUPING function
	Slide 22: A query that substitutes literals for nulls in summary rows
	Slide 23: A query that displays only summary rows
	Slide 24: The basic syntax of the OVER clause
	Slide 25: A SELECT statement with a cumulative total
	Slide 26: The syntax for defining a frame
	Slide 27: A SELECT statement that defines a frame
	Slide 28: A SELECT statement that creates peer groups
	Slide 29: A SELECT statement that calculates moving averages
	Slide 30: The syntax for naming a window
	Slide 31: A SELECT statement with four functions that use the same window
	Slide 32: A SELECT statement with a named window
	Slide 33: A SELECT statement that adds to the specification for a named window

