
Chapter 6

How to code

summary queries

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 1

Objectives

Applied

1. Code summary queries that use the aggregate functions AVG, SUM, MIN,

MAX, COUNT, and COUNT(*), including queries that use the WITH

ROLLUP operator and the GROUPING and IF functions.

2. Code summary queries that use aggregate window functions, including

functions that use frames and named windows.

Knowledge

1. Describe summary queries.

2. Describe the differences between the HAVING clause and the WHERE

clause.

3. Describe the use of the WITH ROLLUP operator.

4. Describe the use of the GROUPING and IF functions with the WITH

ROLLUP operator.

5. Describe the use of the aggregate window functions.

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 2

The syntax of some common aggregate functions

AVG([ALL|DISTINCT] expression)

SUM([ALL|DISTINCT] expression)

MIN([ALL|DISTINCT] expression)

MAX([ALL|DISTINCT] expression)

COUNT([ALL|DISTINCT] expression)

COUNT(*)

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 3

A summary query

SELECT COUNT(*) AS number_of_invoices,

 SUM(invoice_total – payment_total – credit_total)

 AS total_due

FROM invoices

WHERE invoice_total – payment_total – credit_total > 0

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 4

A summary query with COUNT(*), AVG, and SUM

SELECT 'After 1/1/2022' AS selection_date,

 COUNT(*) AS number_of_invoices,

 ROUND(AVG(invoice_total), 2) AS avg_invoice_amt,

 SUM(invoice_total) AS total_invoice_amt

FROM invoices

WHERE invoice_date > '2022-01-01'

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 5

A summary query with MIN and MAX

SELECT 'After 1/1/2022' AS selection_date,

 COUNT(*) AS number_of_invoices,

 MAX(invoice_total) AS highest_invoice_total,

 MIN(invoice_total) AS lowest_invoice_total

FROM invoices

WHERE invoice_date > '2022-01-01'

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 6

A summary query for non-numeric columns

SELECT MIN(vendor_name) AS first_vendor,

 MAX(vendor_name) AS last_vendor,

 COUNT(vendor_name) AS number_of_vendors

FROM vendors

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 7

A summary query with the DISTINCT keyword

SELECT COUNT(DISTINCT vendor_id) AS number_of_vendors,

 COUNT(vendor_id) AS number_of_invoices,

 ROUND(AVG(invoice_total), 2) AS avg_invoice_amt,

 SUM(invoice_total) AS total_invoice_amt

FROM invoices

WHERE invoice_date > '2022-01-01'

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 8

The syntax of a SELECT statement

with GROUP BY and HAVING clauses

SELECT select_list

FROM table_source

[WHERE search_condition]

[GROUP BY group_by_list]

[HAVING search_condition]

[ORDER BY order_by_list]

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 9

A summary query that calculates

the average invoice amount by vendor
SELECT vendor_id, ROUND(AVG(invoice_total), 2)

 AS average_invoice_amount

FROM invoices

GROUP BY vendor_id

HAVING AVG(invoice_total) > 2000

ORDER BY average_invoice_amount DESC

(8 rows)

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 10

A summary query that includes

a functionally dependent column

SELECT vendor_name, vendor_state,

 ROUND(AVG(invoice_total), 2) AS average_invoice_amount

FROM vendors JOIN invoices

 ON vendors.vendor_id = invoices.vendor_id

GROUP BY vendor_name

HAVING AVG(invoice_total) > 2000

ORDER BY average_invoice_amount DESC

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 11

A summary query that counts

the number of invoices by vendor

SELECT vendor_id, COUNT(*) AS invoice_qty

FROM invoices

GROUP BY vendor_id

(34 rows)

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 12

A summary query with a join

SELECT vendor_state, vendor_city, COUNT(*) AS invoice_qty,

 ROUND(AVG(invoice_total), 2) AS invoice_avg

FROM invoices JOIN vendors

 ON invoices.vendor_id = vendors.vendor_id

GROUP BY vendor_state, vendor_city

ORDER BY vendor_state, vendor_city

(20 rows)

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 13

A summary query that limits the groups

to those with two or more invoices

SELECT vendor_state, vendor_city, COUNT(*) AS invoice_qty,

 ROUND(AVG(invoice_total), 2) AS invoice_avg

FROM invoices JOIN vendors

 ON invoices.vendor_id = vendors.vendor_id

GROUP BY vendor_state, vendor_city

HAVING COUNT(*) >= 2

ORDER BY vendor_state, vendor_city

(12 rows)

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 14

A summary query with a search condition

in the HAVING clause

SELECT vendor_name,

 COUNT(*) AS invoice_qty,

 ROUND(AVG(invoice_total), 2) AS invoice_avg

FROM vendors JOIN invoices

 ON vendors.vendor_id = invoices.vendor_id

GROUP BY vendor_name

HAVING AVG(invoice_total) > 500

ORDER BY invoice_qty DESC

(19 rows)

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 15

A summary query with a search condition

in the WHERE clause
SELECT vendor_name,

 COUNT(*) AS invoice_qty,

 ROUND(AVG(invoice_total), 2) AS invoice_avg

FROM vendors JOIN invoices

 ON vendors.vendor_id = invoices.vendor_id

WHERE invoice_total > 500

GROUP BY vendor_name

ORDER BY invoice_qty DESC

(20 rows)

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 16

A summary query with a compound condition

in the HAVING clause
SELECT

 invoice_date,

 COUNT(*) AS invoice_qty,

 SUM(invoice_total) AS invoice_sum

FROM invoices

GROUP BY invoice_date

HAVING invoice_date BETWEEN '2018-05-01' AND '2018-05-31'

 AND COUNT(*) > 1

 AND SUM(invoice_total) > 100

ORDER BY invoice_date DESC

The result set

(7 rows)

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 17

The same query coded with a WHERE clause

SELECT

 invoice_date,

 COUNT(*) AS invoice_qty,

 SUM(invoice_total) AS invoice_sum

FROM invoices

WHERE invoice_date BETWEEN '2018-05-01' AND '2018-05-31'

GROUP BY invoice_date

HAVING COUNT(*) > 1

 AND SUM(invoice_total) > 100

ORDER BY invoice_date DESC

The same result set

(7 rows)

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 18

A summary query with a final summary row

SELECT vendor_id, COUNT(*) AS invoice_count,

 SUM(invoice_total) AS invoice_total

FROM invoices

GROUP BY vendor_id WITH ROLLUP

(35 rows)

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 19

A summary query with a summary row

for each grouping level
SELECT vendor_state, vendor_city, COUNT(*) AS qty_vendors

FROM vendors

WHERE vendor_state IN ('IA', 'NJ')

GROUP BY vendor_state, vendor_city WITH ROLLUP

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 20

The basic syntax of the GROUPING function
GROUPING(expression)

A summary query that uses WITH ROLLUP

on a table with null values
SELECT invoice_date, payment_date,

 SUM(invoice_total) AS invoice_total,

 SUM(invoice_total - credit_total - payment_total)

 AS balance_due

FROM invoices

WHERE invoice_date BETWEEN '2022-07-24' AND '2022-07-31'

GROUP BY invoice_date, payment_date WITH ROLLUP

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 21

A query that substitutes literals for nulls

in summary rows

SELECT IF(GROUPING(invoice_date) = 1, 'Grand totals',

 invoice_date) AS invoice_date,

 IF(GROUPING(payment_date) = 1, 'Invoice date totals',

 payment_date) AS payment_date,

 SUM(invoice_total) AS invoice_total,

 SUM(invoice_total - credit_total - payment_total)

 AS balance_due

FROM invoices

WHERE invoice_date BETWEEN '2022-07-24' AND '2022-07-31'

GROUP BY invoice_date, payment_date WITH ROLLUP

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 22

A query that displays only summary rows

SELECT IF(GROUPING(invoice_date) = 1, 'Grand totals', invoice_date)

 AS invoice_date,

 IF(GROUPING(payment_date) = 1, 'Invoice date totals',

 payment_date) AS payment_date,

 SUM(invoice_total) AS invoice_total,

 SUM(invoice_total - credit_total - payment_total)

 AS balance_due

FROM invoices

WHERE invoice_date BETWEEN '2022-07-24' AND '2022-07-31'

GROUP BY invoice_date, payment_date WITH ROLLUP

HAVING GROUPING(invoice_date) = 1 OR GROUPING(payment_date) = 1

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 23

The basic syntax of the OVER clause

OVER([PARTITION BY expression1 [, expression2]...

 [ORDER BY expression1 [ASC|DESC]

 [, expression2 [ASC|DESC]]...)

A SELECT statement

with two aggregate window functions
SELECT vendor_id, invoice_date, invoice_total,

 SUM(invoice_total) OVER() AS total_invoices,

 SUM(invoice_total) OVER(PARTITION BY vendor_id)

 AS vendor_total

FROM invoices

WHERE invoice_total > 5000

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 24

A SELECT statement with a cumulative total

SELECT vendor_id, invoice_date, invoice_total,

 SUM(invoice_total) OVER() AS total_invoices,

 SUM(invoice_total) OVER(PARTITION BY vendor_id

ORDER BY invoice_total) AS vendor_total

FROM invoices

WHERE invoice_total > 5000

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 25

The syntax for defining a frame

{ROWS | RANGE} {frame_start |

 BETWEEN frame_start AND frame_end}

Possible values for frame_start and frame_end
CURRENT ROW

UNBOUNDED PRECEDING

UNBOUNDED FOLLOWING

expr PRECEDING

expr FOLLOWING

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 26

A SELECT statement that defines a frame

SELECT vendor_id, invoice_date, invoice_total,

 SUM(invoice_total) OVER() AS total_invoices,

 SUM(invoice_total) OVER(PARTITION BY vendor_id

 ORDER BY invoice_date

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

 AS vendor_total

FROM invoices

WHERE invoice_date BETWEEN '2022-04-01' AND '2022-04-30'

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 27

A SELECT statement that creates peer groups

SELECT vendor_id, invoice_date, invoice_total,

 SUM(invoice_total) OVER() AS total_invoices,

 SUM(invoice_total) OVER(PARTITION BY vendor_id

 ORDER BY invoice_date

RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

 AS vendor_total

FROM invoices

WHERE invoice_date BETWEEN '2022-04-01' AND '2022-04-30'

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 28

A SELECT statement that calculates

moving averages

SELECT MONTH(invoice_date) AS month,

 SUM(invoice_total) AS total_invoices,

 ROUND(AVG(SUM(invoice_total))

 OVER(ORDER BY MONTH(invoice_date)

RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING), 2)

 AS 3_month_avg

FROM invoices

GROUP BY MONTH(invoice_date)

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 29

The syntax for naming a window

WINDOW window_name AS

 ([partition_clause] [order_clause] [frame_clause])

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 30

A SELECT statement with four functions

that use the same window
SELECT vendor_id, invoice_date, invoice_total,

 SUM(invoice_total) OVER(PARTITION BY vendor_id)

 AS vendor_total,

 ROUND(AVG(invoice_total) OVER(PARTITION BY vendor_id), 2)

 AS vendor_avg,

 MAX(invoice_total) OVER(PARTITION BY vendor_id)

 AS vendor_max,

 MIN(invoice_total) OVER(PARTITION BY vendor_id)

 AS vendor_min

FROM invoices

WHERE invoice_total > 5000

The result set

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 31

A SELECT statement with a named window
SELECT vendor_id, invoice_date, invoice_total,

 SUM(invoice_total) OVER vendor_window

 AS vendor_total,

 ROUND(AVG(invoice_total) OVER vendor_window, 2)

 AS vendor_avg,

 MAX(invoice_total) OVER vendor_window AS vendor_max,

 MIN(invoice_total) OVER vendor_window AS vendor_min

FROM invoices

WHERE invoice_total > 5000

WINDOW vendor_window AS (PARTITION BY vendor_id)

The same result set

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 32

A SELECT statement that adds to the

specification for a named window

SELECT vendor_id, invoice_date, invoice_total,

 SUM(invoice_total)

OVER (vendor_window ORDER BY invoice_date ASC)

 AS invoice_date_asc,

 SUM(invoice_total)

OVER (vendor_window ORDER BY invoice_date DESC)

 AS invoice_date_desc

FROM invoices

WHERE invoice_total > 5000

WINDOW vendor_window AS (PARTITION BY vendor_id)

© 2023, Mike Murach & Associates, Inc.
Murach’s MySQL 4th Edition C6, Slide 33

	Slide 1: Chapter 6
	Slide 2: Objectives
	Slide 3: The syntax of some common aggregate functions
	Slide 4: A summary query
	Slide 5: A summary query with COUNT(*), AVG, and SUM
	Slide 6: A summary query with MIN and MAX
	Slide 7: A summary query for non-numeric columns
	Slide 8: A summary query with the DISTINCT keyword
	Slide 9: The syntax of a SELECT statement with GROUP BY and HAVING clauses
	Slide 10: A summary query that calculates the average invoice amount by vendor
	Slide 11: A summary query that includes a functionally dependent column
	Slide 12: A summary query that counts the number of invoices by vendor
	Slide 13: A summary query with a join
	Slide 14: A summary query that limits the groups to those with two or more invoices
	Slide 15: A summary query with a search condition in the HAVING clause
	Slide 16: A summary query with a search condition in the WHERE clause
	Slide 17: A summary query with a compound condition in the HAVING clause
	Slide 18: The same query coded with a WHERE clause
	Slide 19: A summary query with a final summary row
	Slide 20: A summary query with a summary row for each grouping level
	Slide 21: The basic syntax of the GROUPING function
	Slide 22: A query that substitutes literals for nulls in summary rows
	Slide 23: A query that displays only summary rows
	Slide 24: The basic syntax of the OVER clause
	Slide 25: A SELECT statement with a cumulative total
	Slide 26: The syntax for defining a frame
	Slide 27: A SELECT statement that defines a frame
	Slide 28: A SELECT statement that creates peer groups
	Slide 29: A SELECT statement that calculates moving averages
	Slide 30: The syntax for naming a window
	Slide 31: A SELECT statement with four functions that use the same window
	Slide 32: A SELECT statement with a named window
	Slide 33: A SELECT statement that adds to the specification for a named window

