
Chapter 6

How to code

summary queries
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Objectives

Applied

1. Code summary queries that use the aggregate functions AVG, SUM, MIN, 

MAX, COUNT, and COUNT(*), including queries that use the WITH 

ROLLUP operator and the GROUPING and IF functions.

2. Code summary queries that use aggregate window functions, including 

functions that use frames and named windows.

Knowledge

1. Describe summary queries.

2. Describe the differences between the HAVING clause and the WHERE 

clause.

3. Describe the use of the WITH ROLLUP operator.

4. Describe the use of the GROUPING and IF functions with the WITH 

ROLLUP operator.

5. Describe the use of the aggregate window functions.
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The syntax of some common aggregate functions

AVG([ALL|DISTINCT] expression)

SUM([ALL|DISTINCT] expression)

MIN([ALL|DISTINCT] expression)

MAX([ALL|DISTINCT] expression)

COUNT([ALL|DISTINCT] expression)

COUNT(*)
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A summary query

SELECT COUNT(*) AS number_of_invoices,

    SUM(invoice_total – payment_total – credit_total)

    AS total_due

FROM invoices

WHERE invoice_total – payment_total – credit_total > 0
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A summary query with COUNT(*), AVG, and SUM

SELECT 'After 1/1/2022' AS selection_date, 

    COUNT(*) AS number_of_invoices,

    ROUND(AVG(invoice_total), 2) AS avg_invoice_amt,

    SUM(invoice_total) AS total_invoice_amt

FROM invoices

WHERE invoice_date > '2022-01-01'
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A summary query with MIN and MAX

SELECT 'After 1/1/2022' AS selection_date, 

    COUNT(*) AS number_of_invoices,

    MAX(invoice_total) AS highest_invoice_total,

    MIN(invoice_total) AS lowest_invoice_total

FROM invoices

WHERE invoice_date > '2022-01-01'
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A summary query for non-numeric columns

SELECT MIN(vendor_name) AS first_vendor,

    MAX(vendor_name) AS last_vendor,

    COUNT(vendor_name) AS number_of_vendors

FROM vendors
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A summary query with the DISTINCT keyword

SELECT COUNT(DISTINCT vendor_id) AS number_of_vendors,

    COUNT(vendor_id) AS number_of_invoices,

    ROUND(AVG(invoice_total), 2) AS avg_invoice_amt,

    SUM(invoice_total) AS total_invoice_amt

FROM invoices

WHERE invoice_date > '2022-01-01'
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The syntax of a SELECT statement 

with GROUP BY and HAVING clauses

SELECT select_list

FROM table_source

[WHERE search_condition]

[GROUP BY group_by_list]

[HAVING search_condition]

[ORDER BY order_by_list]
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A summary query that calculates 

the average invoice amount by vendor
SELECT vendor_id, ROUND(AVG(invoice_total), 2) 

    AS average_invoice_amount

FROM invoices

GROUP BY vendor_id

HAVING AVG(invoice_total) > 2000

ORDER BY average_invoice_amount DESC

(8 rows)
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A summary query that includes 

a functionally dependent column

SELECT vendor_name, vendor_state,

  ROUND(AVG(invoice_total), 2) AS average_invoice_amount

FROM vendors JOIN invoices

  ON vendors.vendor_id = invoices.vendor_id

GROUP BY vendor_name

HAVING AVG(invoice_total) > 2000

ORDER BY average_invoice_amount DESC
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A summary query that counts 

the number of invoices by vendor

SELECT vendor_id, COUNT(*) AS invoice_qty

FROM invoices

GROUP BY vendor_id

(34 rows)
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A summary query with a join

SELECT vendor_state, vendor_city, COUNT(*) AS invoice_qty,

    ROUND(AVG(invoice_total), 2) AS invoice_avg

FROM invoices JOIN vendors

    ON invoices.vendor_id = vendors.vendor_id

GROUP BY vendor_state, vendor_city

ORDER BY vendor_state, vendor_city

(20 rows)
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A summary query that limits the groups 

to those with two or more invoices

SELECT vendor_state, vendor_city, COUNT(*) AS invoice_qty,

    ROUND(AVG(invoice_total), 2) AS invoice_avg

FROM invoices JOIN vendors

    ON invoices.vendor_id = vendors.vendor_id

GROUP BY vendor_state, vendor_city

HAVING COUNT(*) >= 2

ORDER BY vendor_state, vendor_city

(12 rows)
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A summary query with a search condition 

in the HAVING clause

SELECT vendor_name, 

    COUNT(*) AS invoice_qty,

    ROUND(AVG(invoice_total), 2) AS invoice_avg

FROM vendors JOIN invoices

    ON vendors.vendor_id = invoices.vendor_id

GROUP BY vendor_name

HAVING AVG(invoice_total) > 500

ORDER BY invoice_qty DESC

(19 rows)
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A summary query with a search condition 

in the WHERE clause
SELECT vendor_name, 

    COUNT(*) AS invoice_qty,

    ROUND(AVG(invoice_total), 2) AS invoice_avg

FROM vendors JOIN invoices

    ON vendors.vendor_id = invoices.vendor_id

WHERE invoice_total > 500

GROUP BY vendor_name

ORDER BY invoice_qty DESC

(20 rows)
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A summary query with a compound condition 

in the HAVING clause
SELECT 

    invoice_date,

    COUNT(*) AS invoice_qty,

    SUM(invoice_total) AS invoice_sum

FROM invoices

GROUP BY invoice_date

HAVING invoice_date BETWEEN '2018-05-01' AND '2018-05-31'

    AND COUNT(*) > 1

    AND SUM(invoice_total) > 100

ORDER BY invoice_date DESC

The result set

(7 rows)
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The same query coded with a WHERE clause

SELECT 

    invoice_date,

    COUNT(*) AS invoice_qty,

    SUM(invoice_total) AS invoice_sum

FROM invoices

WHERE invoice_date BETWEEN '2018-05-01' AND '2018-05-31'

GROUP BY invoice_date

HAVING COUNT(*) > 1 

    AND SUM(invoice_total) > 100

ORDER BY invoice_date DESC

The same result set

(7 rows)
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A summary query with a final summary row

SELECT vendor_id, COUNT(*) AS invoice_count,

    SUM(invoice_total) AS invoice_total

FROM invoices

GROUP BY vendor_id WITH ROLLUP

(35 rows)
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A summary query with a summary row 

for each grouping level
SELECT vendor_state, vendor_city, COUNT(*) AS qty_vendors

FROM vendors

WHERE vendor_state IN ('IA', 'NJ')

GROUP BY vendor_state, vendor_city WITH ROLLUP
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The basic syntax of the GROUPING function
GROUPING(expression)

A summary query that uses WITH ROLLUP 

on a table with null values
SELECT invoice_date, payment_date,

       SUM(invoice_total) AS invoice_total,

       SUM(invoice_total - credit_total - payment_total)

           AS balance_due

FROM invoices

WHERE invoice_date BETWEEN '2022-07-24' AND '2022-07-31'

GROUP BY invoice_date, payment_date WITH ROLLUP
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A query that substitutes literals for nulls 

in summary rows

SELECT IF(GROUPING(invoice_date) = 1, 'Grand totals',

          invoice_date) AS invoice_date,

       IF(GROUPING(payment_date) = 1, 'Invoice date totals',

          payment_date) AS payment_date,

       SUM(invoice_total) AS invoice_total,

       SUM(invoice_total - credit_total - payment_total)

           AS balance_due

FROM invoices

WHERE invoice_date BETWEEN '2022-07-24' AND '2022-07-31'

GROUP BY invoice_date, payment_date WITH ROLLUP
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A query that displays only summary rows

SELECT IF(GROUPING(invoice_date) = 1, 'Grand totals', invoice_date)

           AS invoice_date,

       IF(GROUPING(payment_date) = 1, 'Invoice date totals',

          payment_date) AS payment_date,

       SUM(invoice_total) AS invoice_total,

       SUM(invoice_total - credit_total - payment_total)

           AS balance_due

FROM invoices

WHERE invoice_date BETWEEN '2022-07-24' AND '2022-07-31'

GROUP BY invoice_date, payment_date WITH ROLLUP

HAVING GROUPING(invoice_date) = 1 OR GROUPING(payment_date) = 1
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The basic syntax of the OVER clause

OVER([PARTITION BY expression1 [, expression2]...

     [ORDER BY expression1 [ASC|DESC]

            [, expression2 [ASC|DESC]]...)

A SELECT statement 

with two aggregate window functions
SELECT vendor_id, invoice_date, invoice_total,

       SUM(invoice_total) OVER() AS total_invoices,

       SUM(invoice_total) OVER(PARTITION BY vendor_id)

           AS vendor_total

FROM invoices

WHERE invoice_total > 5000
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A SELECT statement with a cumulative total

SELECT vendor_id, invoice_date, invoice_total,

       SUM(invoice_total) OVER() AS total_invoices,

       SUM(invoice_total) OVER(PARTITION BY vendor_id

ORDER BY invoice_total) AS vendor_total

FROM invoices

WHERE invoice_total > 5000
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The syntax for defining a frame

{ROWS | RANGE} {frame_start |

                BETWEEN frame_start AND frame_end}

Possible values for frame_start and frame_end
CURRENT ROW

UNBOUNDED PRECEDING

UNBOUNDED FOLLOWING

expr PRECEDING

expr FOLLOWING
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A SELECT statement that defines a frame

SELECT vendor_id, invoice_date, invoice_total,

       SUM(invoice_total) OVER() AS total_invoices,

       SUM(invoice_total) OVER(PARTITION BY vendor_id

         ORDER BY invoice_date

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

         AS vendor_total

FROM invoices

WHERE invoice_date BETWEEN '2022-04-01' AND '2022-04-30'
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A SELECT statement that creates peer groups

SELECT vendor_id, invoice_date, invoice_total,

       SUM(invoice_total) OVER() AS total_invoices,

       SUM(invoice_total) OVER(PARTITION BY vendor_id

         ORDER BY invoice_date

RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

         AS vendor_total

FROM invoices

WHERE invoice_date BETWEEN '2022-04-01' AND '2022-04-30'
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A SELECT statement that calculates 

moving averages

SELECT MONTH(invoice_date) AS month,

       SUM(invoice_total) AS total_invoices,

       ROUND(AVG(SUM(invoice_total))

         OVER(ORDER BY MONTH(invoice_date)

RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING), 2)

         AS 3_month_avg

FROM invoices

GROUP BY MONTH(invoice_date)
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The syntax for naming a window

WINDOW window_name AS

    ([partition_clause] [order_clause] [frame_clause])
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A SELECT statement with four functions 

that use the same window
SELECT vendor_id, invoice_date, invoice_total,

       SUM(invoice_total) OVER(PARTITION BY vendor_id)

           AS vendor_total,

       ROUND(AVG(invoice_total) OVER(PARTITION BY vendor_id), 2)

           AS vendor_avg,

       MAX(invoice_total) OVER(PARTITION BY vendor_id)

           AS vendor_max,

       MIN(invoice_total) OVER(PARTITION BY vendor_id)

           AS vendor_min

FROM invoices

WHERE invoice_total > 5000

The result set
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A SELECT statement with a named window
SELECT vendor_id, invoice_date, invoice_total,

       SUM(invoice_total) OVER vendor_window 

           AS vendor_total,

       ROUND(AVG(invoice_total) OVER vendor_window, 2)

           AS vendor_avg,

       MAX(invoice_total) OVER vendor_window AS vendor_max,

       MIN(invoice_total) OVER vendor_window AS vendor_min

FROM invoices

WHERE invoice_total > 5000

WINDOW vendor_window AS (PARTITION BY vendor_id)

The same result set
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A SELECT statement that adds to the 

specification for a named window

SELECT vendor_id, invoice_date, invoice_total,

       SUM(invoice_total)

OVER (vendor_window ORDER BY invoice_date ASC)

           AS invoice_date_asc,

       SUM(invoice_total)

OVER (vendor_window ORDER BY invoice_date DESC)

           AS invoice_date_desc

FROM invoices

WHERE invoice_total > 5000

WINDOW vendor_window AS (PARTITION BY vendor_id)
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