
Page 1 of 11

Severance Chapter 11 Coding Assignment

General Instructions
My expectations for your work on coding assignment exercises will grow as we progress
through the course. In addition to applying any new programming techniques that have
been covered in the current chapter, I will be expecting you to follow all of the good
programming practices that we have adopted in the preceding weeks. Here is a quick
summary of good practices that we have covered so far:

• Include a Python Docstring that describes the intent of the program.

• Place your highest-level code in a function named main.

• Include a final line of code in the program that executes the main function.

• Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor.
For example, place two blank lines between the code making up a function and
the code surrounding that function.

• Choose names for your variables that are properly descriptive.

• Define CONSTANT_VALUES and use them in place of magic numbers.

• Always use f-strings for string interpolation and number formatting.

• When processing items from Python lists and tuples, unpack the values into
variables with meaningful variable names to avoid using indexed expressions in
your code.

• Close all files before the conclusion of the program.

• Remember that your program should behave reasonably when it is not given any
input. This might be the result of the user pressing enter at a console prompt.
Or, it might be the result of the user providing a an input file that is empty.

• Model your solution after the code that I demonstrate in the tutorial videos.

• Make sure that your test input/output matches the sample provided.

• Create a sub-directory named data within your PyCharm project to hold data
files.

• Remember to submit all data files with your PyCharm project – including the files
that were provided as starter files to this assignment.

• All functions that are not main() should have descriptive, action-oriented names.

• All functions should be of reasonable size.

• All functions should have high cohesion, and low coupling.

• Remember to test your program thoroughly before submitting your work.

• Your code must pass all relevant test cases. Make sure that it passes tests at the
boundaries created by if, else, and elif conditions in your program (boundary
value tests).

• Use of the break statement is allowed but not encouraged.

• Use of the continue statement is forbidden.

• Regular expression patterns should be expressed as Python raw strings.

Page 2 of 11

Exercise 1 (Regular)
Create a program named find_whales.py. It should be modeled after the program that I
demonstrated in the tutorial (my_uncle.py). Your program should be different in the
following respects:

1. Your program should use re.search() to find and count the occurrences of the
word whale (the target word) in a variety of contexts.

2. Your program should be tested with the following files that are provided as

starter files:

a. whale.txt (The text of the novel Moby Dick)
b. empty_file.txt

3. Your program should count occurrences of the target word in the following
contexts. Please note that this is one more context than was included in the
tutorial program:

a. Anywhere on the line
b. At the beginning of the line
c. At the end of the line
d. At the beginning or at the end of the line
e. At the beginning and at the end of the line

When opening the input file, make sure to specify UTF-8 encoding for the text.
Otherwise, some characters in the text will not be readable by your program and cause
a program interruption when testing. Your open statement should resemble the one
below:

• infile = open(infile_path_and_name, 'r', encoding='utf-8')

Please make sure that your regular expression patterns match with the target word
regardless of case (upper, lower, mixed).

Please make sure that your regular expression patterns are implemented with Python
raw strings.

Page 3 of 11

When running a test with empty file input, you should expect the following input/output
on your console:

Please enter the input filename: empty_file.txt

0 lines in file contain target string.
0 lines in file contain target string at the beginning.
0 lines in file contain target string at the end.
0 lines in file contain target string at the beginning or at the end.
0 lines in file contain target string at the beginning and at the end.

When running a test with typical file input, you should expect the following
input/output on your console:

Please enter the input filename: whale.txt

1621 lines in file contain target string.
155 lines in file contain target string at the beginning.
42 lines in file contain target string at the end.
195 lines in file contain target string at the beginning or at the end.
2 lines in file contain target string at the beginning and at the end.

Page 4 of 11

Exercise 2 (Regular)
Create a program named find_zipcodes.py. It should be modeled after the program that
I demonstrated in the tutorial (find_telephones.py). Your program should be different in
the following respects:

1. Your program should use re.findall() to find and extract the occurrences of two
different zip code formats:

a. 99999 (traditional 5-digit zip code)
b. 99999-9999 (more modern zip+4 format)

2. Your program should be tested with the following files that are provided as

starter files:

a. empty_file.txt
b. zipcode.txt

The program should find and extract all occurrences of zip codes that match either
format. The extracted zip codes should be printed in a list as shown below in the sample
output.

Please be aware that the order in which your regex pattern checks for these zip code
patterns is significant. Your regex pattern should check for the longer pattern first and
the shorter pattern second. If your regex pattern checks for these patterns in the
opposite order, you will get wrong results.

When running a test with empty file input, you should expect the following input/output
on your console:

Please enter the input filename: empty_file.txt

No zip codes were found in the input file.

Page 5 of 11

When running a test with typical file input, you should expect the following
input/output on your console:

Please enter the input filename: zipcode.txt

The following zip codes were found in the input file:
 08033
 60025-2252
 55555
 44444-1212
 77777
 66666-1234

Page 6 of 11

Exercise 3 (Regular)
Create a library module named my_better_password_module.py. Start by copying the
library module that was created in the tutorial (my_password_module.py). It has been
provided in the starter files for this assignment.

Your module will be different from the module created in the tutorial in following
respects:

1. The validate_password() function in your version of this module should check
the candidate password for the following errors. Please note that this list
includes checking for 4 additional errors that were not checked in the tutorial
version:

a. Password must be at least 6 characters long.
b. Password must include at least one upper-case letter (A-Z).
c. Password must include at least one lower-case letter (a-z).
d. Password must include at least one digit (0-9).
e. Password must include at least one special character (!@#$%^&*).
f. Password may not contain the word "opensesame" in any case.
g. Password may not contain the word "password" in any case.
h. Password may not contain the word "secret" in any case.
i. Password may not contain a space.

Please make sure that your regular expression patterns match with target word
regardless of case (upper, lower, mixed). To implement this case insensitivity, you might
want to use the re.IGNORECASE option. See https://www.geeksforgeeks.org/name-
validation-using-ignorecase-in-python-regex/ .

Please make sure that your regular expression patterns are implemented with Python
raw strings.

As part of your work on this exercise, you need to extend the unit test code that has
been placed in the main() function of the module. Model your test code after the tests
that were demonstrated in the tutorial. This includes the use of the unit testing
functions available in is430_unit_test_helpers.py.

Be sure to include additional unit test cases for the 4 rules rule that you are adding in
this exercise. Also, check that these new rules have not broken any of the unit test
cases that were passing when you finished the tutorial.

https://www.geeksforgeeks.org/name-validation-using-ignorecase-in-python-regex/
https://www.geeksforgeeks.org/name-validation-using-ignorecase-in-python-regex/

Page 7 of 11

When you run the unit tests for this module, you should expect the following output on
your console:

Unit testing output...

Test case 1: password meets all criteria
Passed

Test case 2: password too short
Passed

Test case 3: password missing upper case letter
Passed

Test case 4: password missing lower-case letter
Passed

Test case 5: password missing special character
Passed

Test case 6: password contains word opensesame
Passed

Test case 7: password missing multiple of the criteria
Passed

Test case 8: password missing digit
Passed

Test case 9: password contains word password
Passed

Test case 10: password contains word secret
Passed

Test case 11: password contains a space
Passed

Page 8 of 11

Exercise 4 (Regular)
Create a program named usable_select_new_password.py. It should be modeled after
the program that I demonstrated in the tutorial (select_new_password.py). Your
program should be different in the following respects:

1. Your program should be more usable than the tutorial version in that it will
report errors and re-prompt the user to enter the new password.

2. Your program should be more usable than the tutorial version in that it will allow

the user to opt out of providing a new password by just pressing the Enter key.

3. Note that your program should continue to re-prompt the user until they have
either entered a valid password or signaled that they wish to quit by pressing the
Enter key.

When running a test in which you provide empty input, you should expect the following
input/output on your console:

Please enter a candidate password (<Enter> to cancel):
Password change has been canceled.

When running a test in which you provide typical input, you should expect the following
input/output on your console:

Please enter a candidate password (<Enter> to cancel): _ _

This was not an acceptable choice.
Please correct the following problems:
 Password must be at least 6 characters long.
 Password must include at least one upper-case letter (A-Z).
 Password must include at least one lower-case letter (a-z).
 Password must include at least one digit (0-9).
 Password must include at least one special character (!@#$%^&*).
 Password may not contain a space.

Please enter a candidate password (<Enter> to cancel): SeCrEt PaSSwOrD

This was not an acceptable choice.
Please correct the following problems:
 Password must include at least one digit (0-9).
 Password must include at least one special character (!@#$%^&*).
 Password may not contain the word "password" in any case.
 Password may not contain the word "secret" in any case.
 Password may not contain a space.

Please enter a candidate password (<Enter> to cancel): iSchool45&
Your new password has been accepted.

Page 9 of 11

Exercise 5 (Challenge)
Create a library module named my_best_password_module.py. Start by copying the
library module that was created in Exercise 3 (my_better_password_module.py).

Your module will be different from the module created in Exercise 3 in following
respects:

1. The validate_password() function in your version of this module should check
the candidate password for an additional error condition:

a. Password must not be on the list of common passwords.

2. The list of common passwords should be based upon the contents of the

following starter file:

a. top_100_most_common_passwords.txt

This file contains the top 100 most common passwords as presented in the
following Wikipedia article:
https://en.wikipedia.org/wiki/Wikipedia:10,000_most_common_passwords

As you might imagine, this list includes offensive words. If you might be
triggered by these words, and you still wish to do this exercise, please contact
me for a list that does not contain offensive words.

Please note that this list is presented in all lower case. So, before searching this
list, the password text must be shifted to lower case as well.

While this type of feature might best be implemented based on an updatable file
of values, feel free to implement this list of disallowed passwords in your
program as a hard-coded data structure (list, set, or dictionary) with literal
values. My solution to this exercise uses such a hard-coded structure.

Be sure to include an additional unit test case for the rule that you are adding in this
exercise. Also, check that this new feature has not broken any of the unit test cases that
were passing when you finished Exercise 3.

https://en.wikipedia.org/wiki/Wikipedia:10,000_most_common_passwords

Page 10 of 11

When you run the unit tests for this module, you should expect the following output on
your console:

Unit testing output...

Test case 1: password meets all criteria
Passed

Test case 2: password too short
Passed

Test case 3: password missing upper case letter
Passed

Test case 4: password missing lower-case letter
Passed

Test case 5: password missing special character
Passed

Test case 6: password contains word opensesame
Passed

Test case 7: password missing multiple of the criteria
Passed

Test case 8: password missing digit
Passed

Test case 9: password contains word password
Passed

Test case 10: password contains word secret
Passed

Test case 11: password contains a space
Passed

Test case 12: password is on the list of common passwords
Passed

Page 11 of 11

Tools
Use PyCharm to create and test all Python programs.

Submission Method
Follow the process that I demonstrated in the tutorial video on submitting your work.
This involves:

• Locating the properly named directory associated with your project in the file
system.

• Compressing that directory into a single .ZIP file using a utility program.

• Submitting the properly named zip file to the submission activity for this
assignment.

File and Directory Naming
Please name your Python program files as instructed in each exercise. Please use the
following naming scheme for naming your PyCharm project:

 surname_givenname_exercises_severance_chapter_11

If this were my own project, I would name my PyCharm project as follows:

 trainor_kevin_exercises_severance_chapter_11

Use a zip utility to create one zip file that contain the PyCharm project directory.
The zip file should be named according to the following scheme:

 surname_givenname_exercises_severance_chapter_11.zip

If this were my own project, I would name the zip file as follows:

 trainor_kevin_exercises_severance_chapter_11.zip

Due By
Please submit this assignment by the date and time shown in the Weekly Schedule.

Last Revised
2025-02-10

