Regular Expressions
Chapter 11

Python for Everybody
www.py4e.com

Regular Expressions

In computing, a regular expression, also referred to
as ‘regex’ or ‘regexp’, provides a concise and
flexible means for matching strings of text, such as
particular characters, words, or patterns of
characters. A regular expression is written in a
formal language that can be interpreted by a regular
expression processor.

Regular Expressions

Really clever “wild card” expressions for matching
and parsing strings

Reqular expression - Wikipedia, the free encyclopedia
+ | \X/ http://en.wikipedia.org/wiki/Regular_expression LEES C | (Q
More than 100 matches (<4 P Q reqular Done

& Log in/create account

Article Discussion Read Edit View history Q

WikipEpIA ~ Regular expression

The Free Encyclopedia From Wikipedia, the free encyclopedia

In computing, a regular expression, also referred to as regex or regexp, provides a
concise and flexible means for matching strings of text, such as particular characters,
words, or patterns of characters. A regular expression is written in a formal language that
can be interpreted by a regular expression processor, a program that either serves as a
parser generator or examines text and identifies parts that match the provided
specification.

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
The following examples illustrate a few specifications that could be expressed in a regular
expression:

+ Interaction

Help
About Wikipedia e The sequence of characters "car" appearing consecutively in any context, such as in

Community portal “car", "cartoon", or "bicarbonate"
Recent changes e The sequence of characters "car" occurring in that order with other characters between
Contact Wikipedia them, such as in "lcelander" or "chandler"

Really smart “Find” or “Search”

Understanding Regular Expressions

* Very powerful and quite cryptic
* Fun once you understand them
« Regular expressions are a language unto themselves

« A language of “marker characters” - programming with
characters

« |t is kind of an “old school” language - compact

OH NO! THE KILLER || BUT TO FIND THEM WED HAVE T0O SEARCH

WHENEVER T LEARN A | | MUST HAVE ROULOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR

NEW SKILL I CoNCoCT | |HER ON VACATION ! Sor'ETHlNS FORMATTED LIKE AN ADDRESS!

ELABORATE FANTASY
SCENARI0S WHERE (T
LETS ME SAVE THE DAY.

Regular Expression Quick Guide

A Matches the of a line
S Matches the of the 1line
. Matches character
\s Matches
\S Matches any character
* a character zero or more times
*? a character zero or more times (non-greedy)
+ a character one or more times
+7? a character one or more times (non-greedy)
‘aeiou] Matches a single character in the listed
["XYZ] Matches a single character the listed
'a-z0-9] The set of characters can include a
Indicates where string i1s to start
Indicates where string is to end

https://www.py4e.com/lectures3/Pythonlearn-11-Regex-Handout.txt

The Regular Expression Module

« Before you can use regular expressions in your program, you
must import the library using “import re”

* You can use re.search() to see if a string matches a regular
expression, similar to using the method for strings

* You can use re.findall() to extract portions of a string that match
your regular expression, similar to a combination of and

slicing:

Using re.search() Like find()

import re
hand = open('mbox-short.txt')

for line in hand: hand = open('mbox-short.txt')
line = line.rstrip() for line in hand:
if line.find('From:') >= 0: line = line.rstrip()
print(line) if re.search('From:', line)

print(line)

Using re.search() Like startswith()

import re

hand = open('mbox-short.txt')

for line in hand: hand = open('mbox-short.txt')
line = line.rstrip() for l%ne 10 @and: |
if line.startswith('From:') : line = line.rstrip()

if re.search('"From:', line) :

print(line)
print(line)

We fine-tune what is matched by adding special characters to the string

Wild-Card Characters

* The dot character matches any character

* If you add the asterisk character, the character is "any number of
times”

Many
Match thg start of the imes
X-Sieve: CMU Sieve 2.3 line \ /
X-DSPAM-Result: Innocent
X-DSPAM-Confidence: 0.8475 AX . x .

X-Content-Type-Message-Body: text/plain ‘

Match any character

Fine-Tuning Your Match

Depending on how “clean” your data is and the purpose of your
application, you may want to narrow your match down a bit

Many
Match the start of times

X-Sieve: CMU Sieve 2.3 the line \ /
N\ * °
®

X-DSPAM-Result: Innocent){
X-Plane is behind schedule: two weeks ¢

\

Match any character

Fine-Tuning Your Match

Depending on how “clean” your data is and the purpose of your
application, you may want to narrow your match down a bit

Match the start of One or more

, times
. . the line
X-Sieve: CMU Sieve 2.3 \ /
X-DSPAM-Result: Innocent A
— ®
X-Plane 1s behind schedule: two weeks X \S+ ®

7

Match any non-whitespace character

Matching and Extracting Data

. returns a True/False depending on whether the string
matches the regular expression

* |f we actually want the matching strings to be extracted, we use

>>> import re

[0—9]+ >>> x = 'My 2 favorite numbers are 19 and 42°
>>> y = ('[0-91+",x)
‘ >>> print(y)

. . l2l, '19', |42|
One or more digits [|

Matching and Extracting Data

When we use , It returns a list of zero or more sub-strings
that match the regular expression

>>> 1mport re

>>> x = 'My 2 favorite numbers are 19 and 42°
>>> y = ('[0-9]+",x)

>>> print(y)

['2', "19', '42"]

>>> y = (' [AEIOU]+',x)

>>> print(y)

[]

Warning: Greedy Matching

The repeat characters (* and +) push outward in both directions

(greedy) to match the largest possible string One or more

characters

>>> import re
>>> x = 'From: Using the : character’ /

>>> y = re.findall('"F.+:', Xx)

N\
>>> print(y) F.+:
[' From: Using the :'] / \

g . the matchis an F match is a :

Non-Greedy Matching

Not all regular expression repeat codes are greedy!

i . .
If you add a ? character, the + and * chill out a bit... One or more
characters but
| / not greedy
>>> 1mport re
>>> x = 'From: Using the : character'’ A
>>> y = re.findall('"F.+?2:', X) F-'I'? .

>>> print(y)

[' From: '] /
First character In Last character in the
the match is an F match is a :

Fine-Tuning String Extraction

You can refine the match for re.findall() and separately determine which
portion of the match is to be extracted by using parentheses

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>> y = re.findall('\S+@\S+',x) \S+@\S+
>>> print(y) \ f
['stephen.marquard@uct.ac.za’]

At least one

non-whitespace
character

Fine-Tuning String Extraction

Parentheses are not part of the match - but they tell where to start
and stop what string to extract

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>> y = re.findall('\S+@\S+', x)

>>> print(y) “"From (\S+@\S+)
['stephen.marquardf@uct.ac.za']

>>> y = re.findall('"From (\S+@\S+)',6x) \ f
>>> print(y)

['stephen.marquard@uct.ac.za']

String Parsing Examples...

21 31
| |

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>>
>>>
>>>
21

>>>
>>>
31

>>>
>>>

uct.

data = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’
atpos = data.find('@"')
print (atpos)

sppos = data.find(' ',atpos) Extractlng. a hOSt
print (sppos) name - using find

host = data[atpos+l : SpPpos] and string slicing
print (host)

aC.Za

The Double Split Pattern

Sometimes we split a line one way, and then grab one of the pieces
of the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
= words[1] ['stephen.marquard', 'uct.ac.za']
pieces = email.split('@")

print(pieces[1]) 'uct.ac.za

The Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008°
y = re.findall('@Q([”]*)',1lin)
print(y)

['uct.ac.za']

et 1)

Look through the string until you find an at sign

The Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008°
y = re.findall('@Q(["]*)',1lin)
print(y)

['uct.ac.za'] 0 @([A]*) g

\

Match non-blank character Match many of them

The Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008°
y = re.findall('@Q(["]*)',1lin)
print(y)
['uct.ac.za'] : @ ™
1%)

\/

Extract the non-blank characters

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008°
y = re.findall('"From .*@(["]1*)',1lin)
print(y)

['uct.ac.za']

AFrom J*@(["]*)

/

Starting at the beginning of the line, look for the string 'From’

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008°
y = re.findall('"From .*@(["]1*)',1lin)
print(y)

['uct.ac.za']

'"“From .*C(["]*)'

SKip a bunch of characters, k}king for an at sign

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’
y = re.findall('*From .*Q@([*]%*)',1lin)

print (y)

['uct.ac.za'] "‘From *@([A]*) '

/

Start extracting

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008°
y = re.findall('"From .*@(["]1*)',1lin)
print(y)

['uct.ac.za']

"“From .*@(["~]+)'

T

Match non-blank character Match many of them

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008°
y = re.findall('"From .*@(["]1*)',1lin)
print(y)

['uct.ac.za']

'"“"From .*Q(["]+)

[

Stop extracting

Spam Confidence

import re

hand = open('mbox-short.txt')

numlist = list()

for line in hand:
line = line.rstrip()
stuff = (' "X-DSPAM-Confidence: ([0-9.]+)', line)
1if len(stuff) != 1 : continue
num = float(stuff[0])
numlist.append(num)

print(' 'Maximum: ', max(numlist)) python dS.py
Maximum: 0.9907

X-DSPAM-Confidence: 0.8475

Escape Character

If you want a special regular expression character to just behave
normally (most of the time) you prefix it with '\’

>>> import re At least one
>>> x = 'We just received for cookies.' or more
>>> y = re.findall('\$[0-9.]+"',x)

>>> print(y) 1

5] \$[0-9.]+

7 N1

A real dollar sign A digit or period

Summary

Regular expressions are a cryptic but powerful language for
matching strings and extracting elements from those strings

Regular expressions have special characters that indicate
intent

Acknowledgements / Contributions

These slides are Copyright 2010- Charles R. Severance

{) of the University of Michigan School of
Information and and made available under a
Creative Commons Attribution 4.0 License. Please maintain this
last slide in all copies of the document to comply with the
attribution requirements of the license. If you make a change,
feel free to add your name and organization to the list of
contributors on this page as you republish the materials.

Initial Development: Charles Severance, University of Michigan
School of Information

... Insert new Contributors and Translations here

