
Beyond the Textbook (Zelle 4e - Chapter 6)

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 1

https://www.ligent.net/

Decision Structures

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 2

https://www.ligent.net/

Topics

Manual Unit Testing

Review Simple if

Chaining Comparison Operators

Truth Value Testing

Review Two-Way if

Review Multi-Way if

Automated Unit Testing Using Pytest

Using Multi-Way if For Lookups

Using Nested ifs to Implement Complex Choices

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 3

https://www.ligent.net/

Topics (Continued)

Using try / except Blocks

Using raise to Signal an Error Condition

Using ifs For Multi-Faceted Validation

Structural Pattern Matching

Easier Formatting With Ternary if

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 4

https://www.ligent.net/

Manual Unit Testing

To this point in the course, we have been using manual unit testing.

In manual unit testing, we develop a test plan. Then we execute each of the test cases

in the plan manually and inspect the outputs.

Manual unit testing can be quick and effective.

Most people who do manual unit testing do not write down their test plan or keep

documentation on their test results.

Manual unit tests are difficult to re-run at a later time as the developer forgets details

of the test cases and the expected results.

Automated unit testing can have many advantages over this manual approach. We will
discuss automated unit testing later in this lecture.

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 5

https://www.ligent.net/

Review Simple if
See: _01_simple.py

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 6

https://www.ligent.net/

Chaining Comparison Operators

In the proper circumstances, chaining multiple comparison operators can lead to more

readable code.

See: _02_chaining_comparison_operators.py

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 7

https://www.ligent.net/

Truth Value Testing

All Python variables may be tested for truthiness regardless of their type.

Empty and zero values evaluate to False .

Non-empty and non-zero values evaluate to True .

Some Python programmers believe that this leads to more readable code.

See Tutorial Article.

See: _03_truth_value_testing.py

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 8

https://www.geeksforgeeks.org/truthy-vs-falsy-values-in-python/
https://www.ligent.net/

Review Two-Way if
See: _05_two_way.py

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 9

https://www.ligent.net/

Review Multi-Way if
When constructing a multi-way if that uses inequalities, you must test conditions

in order.

Ascending order is preferred.

See: _10_multi_way.py

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 10

https://www.ligent.net/

Automated Unit Testing Using Pytest

Automated unit testing is an important tool in modern software development.

Using a unit testing framework, developers create piece of code to implement each

test case.

These test cases become an important asset that allow code to be tested and

retested over it useful life.

We will be using Pytest, one of several popular Python automated unit test
frameworks.

While Pytest has many sophisticated features, we will be using only the basic features.

A modest investment in learning automated unit testing can have an enormous
payback over time.

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 11

https://www.ligent.net/

Using Multi-Way if For Lookups

Inline lookups can be coded with a multi-way if .

Refactoring the lookup into a function often leads to more readable code.

Later in the course, we will learn how to do lookups using a Python dictionary .

At this point in the course, we are learning how to do this without the dictionary .

See:

_25_lookup_in_function.py

test__25_lookup_in_function.py

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 12

https://www.ligent.net/

Using Nested ifs to Implement Complex Choices

Nested ifs can be used to implement complex choices.

Any code block can contain a simple, two-way, or multi-way if .

Nesting ifs two levels deep is most common.

Nesting ifs three levels deep is recommended only if it results in readable code.

Nesting ifs more than three-levels deep is generally considered a bad practice.

Refactoring a nested if into a function often leads to more readable and testable

code.

See:

_35_nested_in_function.py

test__35_nested_ifs_in_function.py

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 13

https://www.ligent.net/

Using try / except Blocks

try / except blocks allow recovery from anticipated program exceptions.

Otherwise, exceptions cause a stack trace to print on the console and execution

stops.

The try block contains the code that might raise an exception.

except blocks contain code that handles exceptions.

The finally block allows for some code to run regardless of whether an exception
was raised.

See:

_40_try.py

_43_try_with_called_code.py

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 14

https://www.ligent.net/

Using raise to Signal an Error Condition

We can raise exceptions in our own code as a way of signalling error conditions.

This architecture allows called code to detect errors and calling code to handle them.

Exceptions are implemented with Python classes.

When raising exceptions, we often re-use the builtin Python exception classes. See
Python Documentation.

It is possible to create our own exception class by creating a custom Python class. See
tutorial article.

See:

_45_raise.py

test__45_raise.py

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 15

https://docs.python.org/3/library/exceptions.html
https://www.geeksforgeeks.org/user-defined-exceptions-python-examples/
https://www.ligent.net/

Using ifs For Multi-Faceted Validation

Multi-faceted validation can be implemented using a series of if statements.

In this design pattern, we usually begin by assuming the the input is valid.

Then, each facet is tested in turn.

A failure of any one test, makes the input invalid.

See:

_75_validation_using_function.py

test__75_validation_using_function.py

_80_validation_using_function_and_messages.py

test__80_validation_using_function_and_messages.py

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 16

https://www.ligent.net/

Extra Python Features (Syntactic Sugar)

See https://en.wikipedia.org/wiki/Syntactic_sugar

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 17

https://en.wikipedia.org/wiki/Syntactic_sugar
https://www.ligent.net/

Structural Pattern Matching

This is a switch statement for Python. See Wikipedia article

Feature added to Python in version 3.10.

We are covering it here in its simplest form: a substitute for the multi-way if .

It also introduces a pattern matching mechanism that is potentially much more

powerful than the multi-way if . See tutorial in Python documentation.

See:

_92_lookup_in_function_using_structural_pattern_matching.py

test__92_lookup_in_function_using_structural_pattern_matching.py

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 18

https://en.wikipedia.org/wiki/Switch_statement
https://peps.python.org/pep-0636/
https://www.ligent.net/

Easier Formatting With Ternary if
Sometimes we want to format an output message that is slightly different depending
upon data values.

A classic example is when we want the message to include plural or singluar terms
based upon data values.

This is possible using the two-way if .

But, it may be easier to code using the ternary if .

See:
_94_formatting_without_ternary_if.py

_96_formatting_with_ternary_if.py

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 19

https://www.ligent.net/

Last Revised 2025-08-04

Beyond the Textbook (Zelle 4e - Chapter 6) | 2025 Ligent, LLC 20

https://www.ligent.net/

