
Python Programming, 4/e (Modified by KT) 1

Python Programming:
An Introduction To
Computer Science

Chapter 10
Persistent Data

Python Programming, 4/e 2

Objectives
n To understand basic file-processing concepts and

techniques for opening, reading, and writing files in
Python.

n To understand the structure of text files and be able
to write programs that use them.

n To become familiar with the basic organization of file
systems, including role of absolute and relative paths
play in locating files, and be able to write Python
programs that process collections of files.

Python Programming, 4/e 3

Text Files
n In all of the examples so far, data has either been

embedded in the program code or entered by the user
when the program runs.

n We lack a mechanism for entering data and having
that data persist from one run of the program to the
next.

Python Programming, 4/e 4

Text Files
n Persistent data is a critical component of any modern

computing system.
n Your word processor needs to save the paper you’re

working on.
n Your programming environment needs to be able to save

and reload your Python code.
n Typically, such information is stored in files.

Python Programming, 4/e 5

Text Files
n A file is a sequence of data that is stored in secondary

memory (usually on a disk drive of some sort).
n Files can contain any data type, but the easiest files to

work with a those that contain text.
n Files of text have the advantage that they can be read and

understood by humans, and they are easily created and
edited using general purpose text editors, like IDLE.

Python Programming, 4/e 6

Multi-line Strings
n You can think of a text file as a (possibly long) string

that happens to be stored on disk.
n A special character or sequence of characters is used

to mark the end of each line.
n While this convention varies by operating system, Python

takes care of these different conventions for us and just
uses the regular newline character (\n).

Python Programming, 4/e 7

Multi-line Strings
Hello

World

Goodbye 32

n When stored to a file, you get this:
Hello\nWorld\n\nGoodbye 32\n

n Notice that the blank line becomes a bare newline.

Python Programming, 4/e 8

Multi-line Strings
n This is no different than when we embed newline

characters into output strings to produce multiple lines
of output with a single print statement.

print("Hello\nWorld\n\nGoodbye 32\n")

n Remember, if you simply evaluate a string containing
newline characters in the shell, you will just get the
embedded newline representation back.

"Hello\nWorld\n\nGoodbye 32\n"

Python Programming, 4/e 9

File Processing Outline
n Virtually all programming languages share certain

underlying file manipulation concepts.
n We need some way to associate a file on disk with an

object in a program – this is called opening a file.
n We need a set of operations that can manipulate the file

object.
n At the very least, we need to be able to read the information from

a file and to write new information to a file.
n Lastly, when a we are done we need to close the file.

Python Programming, 4/e 10

File Processing Outline
n This idea of opening and closing files is closely related

to how you might work with files in an application
program such as IDLE.
n When you open a file for editing in IDLE, the file is actually

read from disk and stored in RAM.
n At this point, the file is closed (in the programming sense).
n As you edit the file, you are really making changes to the

data in memory, not the file itself.
n Changes will not show up on disk until you “save” it.

Python Programming, 4/e 11

File Processing Outline
n The process of saving a file in IDLE is also a multi-

step process.
n The original file on the disk is opened, this time in a mode

that allows it to store information (opened for writing).
n Doing this actually erases the old contents of the file!
n File writing operations are then used to copy the current

contents of the in-memory file into the new file on disk.

Python Programming, 4/e 12

File Processing Outline
n Working with text files in Python is easy!

n Create a file object that corresponds to a file on disk:
<variable> = open(<path>, <mode>)

n Here, path is a string that provides the location of the file
on disk.

n For a text file, mode is either "r" or "w" depending on
whether the file intended to be read from or written to.

n If the mode is omitted, the file is opened for reading.

Python Programming, 4/e 13

File Processing Outline
printfile.py

Prints a file to the screen.

def main():
 fname = input("Enter a filename: ")

 infile = open(fname, "r")

 data = infile.read()
 infile.close()

 print(data)

Python Programming, 4/e 14

File Processing Outline
n The program first prompts the user for a file name

and then opens the file for reading through the
variable infile.
n While any identifier works, here the name serves to remind

us that the object is a file and it is being used for input.
n The entire contents of the file is then read as one

multi-line string and stored in the variable data.
n Printing data causes the file contents to be displayed.

Python Programming, 4/e 15

File Processing Outline
n This process illustrates the basic three-step process

for working with a file:
1. Open the file.
2. Use file operations to read or write data.
3. Close the file.

n Any file that is opened should be closed when the
program is done using it. Technically, all files get
closed when the program terminates, but doing it
explicitly is good programming style.

Python Programming, 4/e 16

File Processing Outline
n In order to make sure that necessary actions such as

closing a file occur, Python has a powerful feature
called a context manager.

printfile2.py
Prints a file to the screen.

def main():

 fname = input("Enter a filename: ")

 with open(fname, "r") as infile:
 data = infile.read()

 print(data)

Python Programming, 4/e 17

File Processing Outline
n The with statement associates the variable with the

file object created by open.
n The file object acts as a context manager for

executing the instructions in the indented body of the
with.

n When the body has completed, the file will be closed
automatically, even if control leaves the body due to
an exception or return statement.

Python Programming, 4/e 18

Reading from a File
n read is just one of several options that can be used to

access the contents of a file.
n <file>.read() – Returns the entire remaining contents of

the file as a single (potentially large, multi-line) string.
n <file>.readline() – Returns the next line of the file, i.e.

all text up to and including the newline character.
n <file>.readlines() – Returns a list of the remaining lines

in the file. Each list item is a string of a single line including
the newline character at the end.

Python Programming, 4/e 19

Reading from a File
n Text files are read sequentially – the system keeps

track of what has been read since a file has been
opened, so that a later read will pick up where the
previous one left off.

n If you want to read a previous line, you need to close
and reopen the file.

Python Programming, 4/e 20

Reading from a File
n Successive calls to readline() read successive line

from the file.
n The string returned by readline() will always end

with a newline character.
n Use slicing to strip off the newline character at the

end of the line, otherwise it will look double-spaced.
n Or, you could also tell print to not add its own

newline, e.g. print(line, end="").

Python Programming, 4/e 21

Reading from a File
with open(someFile, "r") as infile:

 for _ in range(5):
 line = infile.readline()

 print(line[:-1])

Python Programming, 4/e (Modified by KT) 22

Reading from a File
n One way to loop through the entire contents of a file

is to read in all of the file using readlines, then loop
through the resulting list.

with open(someFile, "r") as infile:

 for line in infile.readline():

 # process the line here

n What happens if the file is too large to fit in your
computer’s memory?

Python Programming, 4/e 23

Reading from a File
n Python treats a file as sequence of lines, so looping

through the lines can be done directly:

with open(someFile, "r") as infile:

 for line in infile:

 # process the line here

Python Programming, 4/e 24

Reading from a File
n Let’s improve our statistics library from last chapter.
n One disadvantage of the previous version is that
getNumbers() gets numbers from the user
interactively.

n What if you are trying to average one hundred
numbers and you make a mistake on number 98?
Doh! You’d need to start over again.

Python Programming, 4/e 25

Reading from a File
n A better approach – type all the numbers into a file. We

can then edit the data before sending it to the program.
n This file-oriented approach is typically used for data-

processing applications.
n We can improve the usefulness of our library by adding a
getNumbersFromFile function that takes the name of a file
as a parameter and returns a list of numbers read from the
file.

Python Programming, 4/e 26

Reading from a File
n Suppose our numbers are in a text file, with each line

containing a single number.
def getNumbersFromFile(fname):

 nums = []
 with open(fname, "r") as infile:

 for line in infile:

 nums.append(float(line))

 return nums

Python Programming, 4/e 27

Reading from a File
n We could also do this more succinctly with a list

comprehension:
def getNumbersFromFile(fname):

 nums = []
 with open(fname, "r") as infile:

 nums = [float(line) for line in infile]

 return nums

Python Programming, 4/e 28

Reading from a File
n Using this approach, we need to be very careful with the

format of the input file – there must be exactly one
number on each line.

n A common error is to introduce an extra blank line at the
bottom that may go unnoticed. This would cause

in <listcomp>

nums = [float(line) for line in infile]

ValueError: could not convert string to float: ’’

Python Programming, 4/e 29

Reading from a File
n We could make our function more flexible by having it

accept multiple numbers on the same line.
n A single line can easily be turned into a list of numbers

using split in the list comprehension, similar to what we
did when we had multiple numbers on a single line of
interactive input:

nums = [float(num) for x in line.split()]

Python Programming, 4/e 30

Reading from a File
n To get all the numbers across multiple lines, we simply wrap

this up in an accumulator loop that processes the lines of the
input file:

def getNumbersFromFile(fname):

 nums = []
 with open(fname, "r") as infile:

 for line in infile:
 newnums = [float(num) for x in line.split()]

 nums.extend(newnums)
 return nums

Python Programming, 4/e 31

Reading from a File
n Here the accumulator is called nums and the list created

from each line is called newnums.
n The final line in the loop body appends the numbers from

the current line to the end of the accumulator using the
list extend method introduced in chapter 9.

n This version of the stats program appears in stats3.py.

Python Programming, 4/e 32

Reading from a File
n Using this approach has several benefits:

n It allows you to create a data file with as many numbers on each
line as you want.

n The program will also be more robust by handling accidental
blank lines (Do you see how?).

Python Programming, 4/e 33

Writing to a File
n Opening a file for writing prepares that file to receive data.
n If no file with the given name exists, a new file will be

created.
n If a file with the given name does exist, Python will

delete it and create a new, empty file.
with open("mydata.out", "w") as outfile:
 # do things with outfile here

Python Programming, 4/e 34

Writing to a File
n The easiest way to write information into a text file is to

use the print function.
n To do this, simply add an extra keyword parameter that

specifies the file:
print(..., file=<outputfile>)

n This behaves exactly like a normal print, except the result
is sent to outputfile rather than the screen.

Python Programming, 4/e 35

Writing to a File
n Here’s a program to create a text file with a haiku about

programming:
haiku.py

def main():
 haiku = ["White space and syntax",

 "Python code flows like water",

 "Solutions emerge"]
 print("I have a haiku for you.")

Python Programming, 4/e 36

Writing to a File
fname = input("Enter a file name to receive the haiku: ")

 with open(fname, "w") as haikufile:
 for line in haiku:

 print(line, file=haikufile)
 print(f"Look in {fname} to see your haiku")

Python Programming, 4/e 37

Batch Processing
n To see how these pieces fit together in a larger example,

let’s redo the username generation program from Chapter
8.

n Our previous version created usernames interactively by
having the user type in his or her name.

n If we were setting up accounts for a large number of users,
this process would probably not be done interactively, but
in batch mode, where program input and output is done
through files.

Python Programming, 4/e 38

Batch Processing
n Each line of the input file will contain the first and last

names of a new user separated by one or more spaces.
n The program produces an output file containing a line for

each generated username.

Python Programming, 4/e 39

Batch Processing
userfile.py

Program to create a file of usernames in batch mode.

def main():
 print("This program creates a file of usernames from a")

 print("file of names.")

 # get the file names
 infileName = input("What file are the names in? ")

 outfileName = input("What file should the usernames go in? ")

Python Programming, 4/e 40

Batch Processing
open the files

 with open(infileName, "r") as infile, open(outfileName, "w") as outfile:

 # process each line of the input file
 for line in infile:

 # get the first and last names from line

 first, last = line.split()
 # create the username

 uname = (first[0]+last[:7]).lower()

 # write it to the output file

 print(uname, file=outfile)
print("Usernames have been written to", outfileName)

Python Programming, 4/e 41

Batch Processing
n A couple things worth noticing:

n Two files are open at the same time, one for input (infile) and
one for output (outfile). This is accomplished in the with by
including two open(…) as <variable> clauses separated by a
comma. It’s not unusual for a program to act on multiple files
simultaneously.

n When creating the username, the lower string method was used
to ensure that the username is all lowercase, even if the input
names are mixed case.

Python Programming, 4/e 42

File Names and Paths
n So far in our examples we’ve indicated the file to be

opened by supplying the name of the file as a string.
n Using this approach, files end up in the folder where the

programs live.
n This might be OK for assignments, but in the real world

we’d like users to be able to select files from anywhere in
secondary memory.

Python Programming, 4/e 43

Absolute and Relative Paths
n Way back in Chapter 1 we looked at how a computer’s

operating system generally organizes secondary memory
as a hierarchical collection of directories (also called
folders) that can contain files as well as other directories.

n The directory at the top of this hierarchy is called the root
directory.

n A file is located by specifying a path from the root
directory down through the hierarchy of directories.

Python Programming, 4/e 44

Absolute and Relative Paths
n E.g., the text of this chapter is in a file having the path
/home/zelle/Books/cs1book/cs1book4e/textbook/chapter10.tex

n The top-level directory on Dr. Zelle’s computer is designated
with a /. His computer’s root directory contains around 20
subdirectories, including one called home.

n A slash (/) is also used to separate the directory names along
the path.

Python Programming, 4/e (Modified by KT) 45

Absolute and Relative Paths
n You can think of the path from the root as representing

the “full name” of any given file.
n The name has to be so complex because a typical

computer contains millions of files; there must be a way to
uniquely identify each of these files.

n This complete path to a given directory or file is called the
absolute path.

Python Programming, 4/e 46

Absolute and Relative Paths
n Anywhere in Python where a file path is needed, an

absolute path can be used.
n Working with absolute paths can be a pain!

n They’re long
n Moving a file or folder changes the absolute paths of files and

folders!
n Any path that beings with something other than the root

directory is considered a relative path.

Python Programming, 4/e 47

Absolute and Relative Paths
n When we just use the name of a file in our examples,

those were relative paths.
n Running programs always have an associated working

directory which is the directory that it is currently working
in.

n Typically, this is the directory where your program file is
located.

Python Programming, 4/e 48

Absolute and Relative Paths
n Suppose we have a program data_analyzer.py stored in
/home/zelle/python.

n When this program is run its working directory will be
/home/zelle/python.

path = input("What file should I analyze? ")

with open(path, "r") as infile:

 # process the file

n If the user enters nums.txt, the program will look for
/home/zelle/python/nums.txt.

Python Programming, 4/e 49

Absolute and Relative Paths
n Suppose the user instead enters data/nums.txt.
n Python will threat this as a path starting at the current

working directory: /home/zelle/python/data/nums.txt.
n The characters “.” and “..” have special meanings for

relative paths.
n “.” indicates the current working directory
n “..” indicates the parent of the current working directory.
n In our previous example, an equivalent would be
../data/nums.txt

Python Programming, 4/e 50

Absolute and Relative Paths
n Dr. Zelle’s laptop is running Linux. While the ideas are the

same, the details differ among operating systems.
n On macOS, a user’s home directory is in /Users.

n /Users/zelle/data/nums.txt

n On Windows, the path notation is a little different.
n C:\Users\zelle\data\nums.txt

n Each hard drive (C:, D:) has its own file system with its own root
directory.

n Windows uses \ rather than / in paths

Python Programming, 4/e 51

Absolute and Relative Paths
n Python always allows paths to be separated using a

regular slash (/) on any OS for interoperability.
n It’s best practice to avoid “\” in Windows paths in Python

since the backslash is used in string literals to indicate
special characters, i.e. \t, \n. To use an actual backslash
in a literal, you’d need to escape it (\\) or prefix the string
with r to indicate it is a “raw” string (don’t interpret).

Python Programming, 4/e 52

Absolute and Relative Paths
n Three ways to open the same file in Windows

n with open("data/nums.txt") as infile: # generic Python
 # notation

n with open("data\\nums.txt") as infile: # Windows notation
 # using special char

n with open(r"data\nums.txt") as infile: # Windows notation
 # using raw string

n The best one? Number one – it will work on other operating
systems besides Windows.

Python Programming, 4/e 53

Using pathlib
n File are a ubiquitous part of the computing landscape, and

just about every program has to manipulate them in one
way or another.

n Python provides a library called pathlib to help with some
of the common, but tedious tasks.

n The main tool is the Path object. Path is a sort of
“wrapper” around a path string that gives it some
convenient superpowers.

Python Programming, 4/e 54

Using pathlib
n Let’s improve our batch-oriented username program so

that it checks if the intended output file exists. If it does,
create a backup of that file so that the contents aren’t lost
when the new usernames are written.

Python Programming, 4/e 55

Using pathlib
userfile2.py
from pathlib import Path

def main():

 print("This program creates a file of usernames from a")

 print("file of names.")
 # get the file names

 inPath = Path(input("What file are the names in? "))

 outPath = Path(input("What file should the usernames go in? "))

Python Programming, 4/e 56

Using pathlib
backup the output file if it already exists

 if outPath.exists():

 backupPath = outPath.with_suffix(".bak")

 print(f"Renaming existing {outPath.name} to {backupPath.name}")

 outPath.rename(backupPath)

Python Programming, 4/e 57

Using pathlib
open the files

 with open(inPath, "r") as infile, open(outPath, "w") as outfile:

 # process each line of the input file

 for line in infile:

 # get the first and last names from line

 first, last = line.split()
 # create the username

 uname = (first[0]+last[:7]).lower()

 # write it to the output file

 print(uname, file=outfile)

print("Usernames have been written to", outPath)

Python Programming, 4/e 58

Using pathlib
n You can extract different parts of a path using simple

attributes from a Path object.
>>> path = Path("/home/zelle/python/data.txt")

>>> path.name

 'data.txt’

>>> path.stem
 'data’

>>> path.suffix

 '.txt'

Python Programming, 4/e 59

Using pathlib
n We can create a slightly modified path by using
with_<part> methods to replace specific parts in an
existing path.
n backupPath = outPath.with_suffix(".bak")

n This creates a new Path that is just like outPath, except it has
the extension (suffix) “.bak” instead of its original extension.

n Our program’s output will look something like
Renaming existing usernames.txt to usernames.bak

Python Programming, 4/e 60

Using pathlib
n The actual renaming of the file happens with
outPath.rename(backupPath)

n The rename method is one of a number of Path object
methods that can be used to make changes in the
underlying file system.

n The necessary commands differ by operating system, but
the Path object handles the differences in a transparent
way!

Python Programming, 4/e 61

Iterating over Directories
n Another task that programs often need to do is to process

a whole batch of files at a time.
n For example, a photo management app might allow the

user to load all the images in a given directory.
n If you have a Path object that points to a directory on

your hard disk, there are a couple methods that allow you
to loop over the contents of that directory.

Python Programming, 4/e 62

Iterating over Directories
n The simplest of these methods is iterdir.
n It produces a sequence of Path objects, one for each file

or directory contained in the original directory.
>>> path = Path(".")

>>> for p in path.iterdir():

 print(p)

names.txt

stats3.py
…

Python Programming, 4/e 63

Iterating over Directories
list(path.iterdir())

[PosixPath(’names.txt’), PosixPath(’test.txt’),
PosixPath(’stats3.py’), PosixPath(’data’),
PosixPath(’nums1.txt’),

PosixPath(’usernames.bak’), PosixPath(’nums2.txt’),

PosixPath(’usernames.txt’),
PosixPath(’userfile2.py’),

PosixPath(’userfile.py’), PosixPath(’haiku.py’)]

Python Programming, 4/e 64

Iterating over Directories
n Notice that each item in the sequence produce by
listdir() is itself a Path object.

n It means we can make use of the various Path methods
on these items.

n The is_file method returns True if the path is a file (as
opposed to a directory).

files = [p for p in path.iterdir() if p.is_file()]

Python Programming, 4/e 65

Iterating over Directories
n If we wanted just the Python program files, we could grab just

the items that had a .py suffix.
n python_files = [p for p in path.iterdir() if p.suffix == ".py"]

n This last example could have been handled more simply using a
technique known as file globbing.

n You can select a subset of files that match a pattern using the
glob method:
path.glob(pattern)

Python Programming, 4/e 66

Iterating over Directories
n The pattern looks like a regular path string except that it

can contain certain “wildcard” characters.
n “?” matches any single character
n “*” matches any sequence of characters
n python_files = list(path.glob("*.py"))

n The glob "*.py" will match any file that ends with .py

Python Programming, 4/e 67

Iterating over Directories
n Our last addition was a getNumbersFromFile(path)

function that can be used to get a data set from a specific
file.

n Suppose we have a number of data sets, each stored in a
separate file in our data directory.

n It would have handy to have a getNumbersFromFiles
function making use of file globbing to accumulate all the
data across the set of files.

Python Programming, 4/e 68

Iterating over Directories
n Let’s write a function with two parameters.

n basedir gives the directory containing the data
n pattern is a pattern for which files to look in
n To get the number from all the flies in a data directory, we could

do data = getNumbersFromFiles("data", "*")
n To get data from all files having “exam” in the name,
data = getNumbersFromFiles("data", "*exam*")

n To write this you need an accumulator to build a list of all the
numbers.

Python Programming, 4/e 69

Iterating over Directories
def getNumbersFromFiles(basedir, pattern):

 path = Path(basedir)
 nums = []

 for filepath in path.glob(pattern):

 newnums = getNumbersFromFile(filepath)

 nums.extend(newnums)

 return nums

Python Programming, 4/e 70

Iterating over Directories
n Notice how basedir was turned into a Path object at the

start – that ensures that you can call glob in the heading.
n This function will work when basedir is passed as either a

string or a Path object.

Python Programming, 4/e 71

File Dialogs
n Some operating systems (e.g. Windows and macOS), by

default will only show the main stem of the filename and
not the type suffix, making it hard to know the full
filename for performing file operations.

n This situation is even more complicated when the file
exists somewhere other than the current working
directory. In order to operate on these far-flung files, we
need the complete path to them! Do you know how to find
the complete path to an arbitrary file on your computer?

Python Programming, 4/e 72

File Dialogs
n One solution to this problem is to allow users to browse

the file system visually and navigate their way to particular
file/directory.

n The usual technique incorporates a dialog box that allows
a user to click around in the file system and either select
or type in th ename of a file.

n Fortunately for us, the tkinter GUI library included with
(most) standard Pythons has these kinds of functions!

Python Programming, 4/e 73

File Dialogs
n To ask the user for the name of a file to open, you can use

the askopenfilename function found in the
tkinter.filedialog module.
from tkinter.filedialog import askopenfilename

n The reason for the dot notation is that tkinter is package
composed of multiple modules.

n To get the name of the user names file
infileName = askopenfilename()

Python Programming, 4/e 74

File Dialogs

Python Programming, 4/e 75

File Dialogs
n The dialog box allows the user to either type in th ename

of the file or to simply select it with the mouse.
n When the user clicks the “Open” button, the complete path

name of the file is returned as a string and saved into the
variable infileName.

n If the user clicks the “Cancel” button, the function will
simpley return the empty string, "".

Python Programming, 4/e 76

File Dialogs
from tkinter.filedialog import asksaveasfilename
...

outfileName = asksaveasfilename()

n You could, of course, import both at once:
from tkinter.filedialog import askopenfilename, asksaveasfilename

Python Programming, 4/e 77

File Dialogs

Python Programming, 4/e 78

File Dialogs
n If you need to get a directory path from the user, there’s

also an askdirectory function.
n All these functions have numerous optional parameters

that allow a program to customize the resulting dialogs.

