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Python Programming:
An Introduction To
Computer Science

Chapter 9
Data Collections
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Objectives
n To understand the use of lists (arrays) to represent a 

sequential collection of data.
n To be familiar with the functions and methods 

available for manipulating Python lists.
n To understand the use of tuples for grouping a set of 

related values.
n To be familiar with Python dictionaries as a data 

structure for storing non-sequential collections.
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Objectives
n To be able to write programs that use lists and tuples 

to structure and manipulate collections of information.
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Example Problem: Simple Statistics
n Many programs deal with large collections of similar 

information.
n Words in a document
n Students in a course
n Data from an experiment
n Customers of a business
n Graphics objects drawn on the screen
n Cards in a deck



Example Problem: Simple Statistics
Let’s review some code we wrote in chapter 7:
# average4.py
#    A program to average a set of numbers
#    Illustrates sentinel loop using empty string as sentinel

def main():
    sum = 0.0
    count = 0
    xStr = input("Enter a number (<Enter> to quit) >> ")
    while xStr != "":
        x = float(xStr)
        sum = sum + x
        count = count + 1
        xStr = input("Enter a number (<Enter> to quit) >> ")
    print("\nThe average of the numbers is", sum / count)
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Example Problem: Simple Statistics
n This program allows the user to enter a sequence of 

numbers, but the program itself doesn’t keep track of 
the numbers that were entered – it only keeps a 
running total.

n Suppose we want to extend the program to compute 
not only the mean, but also the median and standard 
deviation.
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Example Problem: Simple Statistics
n The median is the data value that splits the data into 

equal-sized parts.
n For the data [2, 4, 6, 9, 13], the median is 6, since 

there are two values greater than 6 and two values 
that are smaller.

n One way to determine the median is to store all the 
numbers, sort them, and identify the middle value.
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Example Problem: Simple Statistics
n The standard deviation is a measure of how spread 

out the data is relative to the mean.
n If the data is tightly clustered around the mean, then 

the standard deviation is small. If the data is more 
spread out, the standard deviation is larger.

n The standard deviation is a yardstick to 
measure/express how exceptional a value is.
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Example Problem: Simple Statistics
n The standard deviation is 

n Here      is the mean,       represents the ith data value 
and n is the number of data values.

n The expression           is the square of the “deviation” 
of an individual item from the mean.

Python Programming, 4/e 9

𝑠 =
∑ 𝑥̄ − 𝑥! "

𝑛 − 1

𝑥̄ 𝑥)

𝑥̄ − 𝑥! "



Example Problem: Simple Statistics
n The numerator is the sum of these squared 

“deviations” across all the data.
n Suppose our data was [2, 4, 6, 9, 13].

n The mean (𝑥̅) is 6.8
n The numerator of the standard deviation is 
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Example Problem: Simple Statistics
n As you can see, calculating the standard deviation not 

only requires the mean (which can’t be calculated until 
all the data is entered), but also each individual data 
element!

n We need some way to remember these values as they 
are entered
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Python Lists
n We need a way to store and manipulate an entire 

collection of numbers.
n We can’t just use a bunch of variables, because we 

don’t know many numbers there will be.
n What do we need? Some way of combining an entire 

collection of values into one object.
n We’ve already done something like this before…
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Python Lists
>>> list(range(10))
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> "This is an ex-parrot!".split()
    ['This', 'is', 'an', 'ex-parrot!’]

n Both of these familiar functions return a collection of 
values denoted by the enclosing square brackets.

n Lists are the most common way of handling collections 
of data in a Python program.
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Lists and Arrays as Sequences
n Python lists are ordered sequences of items. For 

instance, a sequence of n numbers might be called S:
S = s0, s1, s2, s3, …, sn-1

n Specific values in the sequence can be referenced using 
subscripts, e.g. the first item is denoted with the subscript 0 
(s0 )

n By using numbers as subscripts, mathematicians can 
succinctly summarize computations over items in a sequence 
using subscript variables.
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Lists and Arrays as Sequences
n Suppose the sequence is stored in a variable s. We 

could write a loop to calculate the sum of the items in 
the sequence like this:
sum = 0
for i in range(n):
    sum = sum + s[i]

n Almost all computer languages have a sequence 
structure like this, sometimes called an array.
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Lists and Arrays as Sequences
n A list or array is a sequence of items where the entire 

sequence is referred to by a single name (i.e. s) and 
individual items can be selected by indexing (i.e. 
s[i]).

n In other programming languages, arrays are generally 
a fixed size, meaning that when you create the array, 
you have to specify how many items it can hold.

n Arrays are generally also homogeneous, meaning they 
can hold only one data type.
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Lists and Arrays as Sequences
n Python lists are dynamic. They can grow and shrink 

on demand.
n Python lists are also heterogeneous, a single list can 

hold arbitrary data types.
n Python lists are mutable sequences of arbitrary 

objects.
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Lists Operations
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Operator Meaning
<seq> + <seq> Concatenation

<seq> * <int-expr> Repetition
<seq>[] Indexing

len(<seq>) Length
<seq>[:] Slicing

for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)



Lists Operations
n Except for the membership check, we’ve used these 

operations before on strings.
n The membership operation can be used to see if a 

certain value appears anywhere in a sequence.
>>> lst = [1,2,3,4]
>>> 3 in lst
True
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Lists Operations
n The summing example from earlier can be written like this:

sum = 0
for x in s:
    sum = sum + x

n Unlike strings, lists are mutable:
>>> lst = [1,2,3,4]
>>> lst[3]
4
>>> lst[3] = "Hello“
>>> lst
[1, 2, 3, 'Hello']
>>> lst[2] = 7
>>> lst
[1, 2, 7, 'Hello']
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Lists Operations
n Lists can be created by listing items inside square 

brackets.
odds = [1, 3, 5, 7, 9]
food = ["spam", "eggs", "back bacon"]
silly = [1, "spam", 4, "U"]
empty = []

n A list of identical items can be created using the 
repetition operator. This command produces a list 
containing 50 zeroes:
zeroes = [0] * 50
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Lists Operations
# month2.py
# A program to print the month abbreviation, given its number.

def main():
    # months is a list used as a lookup table
    months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
              "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

    n = int(input("Enter a month number (1-12): "))

    print(f"The month abbreviation is {months[n-1]}.")
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Lists Operations
n In this program there is a list of strings called months 

to use as the lookup table.
n This line of code is split over two lines – Python knows 

the list isn’t finished until the “]” is encountered. This 
makes the code more readable.

n Lists, like strings, are indexed beginning with 0. 
months[0] is "Jan". The nth month is at position n-1.
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Lists Operations
n It would be trivial to modify this program to print out 

the entire month name. Just change the lookup list!
 months = ["January", "February", "March", "April",
              "May", "June", "July", "August",
              "September", "October", "November", "December"]
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Lists Methods

Python Programming, 4/e 25

Method Meaning

<list>.append(x) Add element x to end of list.

<list>.sort() Sort (order) the list. A comparison function may be 
passed as a parameter.

<list>.reverse() Reverse the list.

<list>.index(x) Returns index of first occurrence of x.

<list>.insert(i, x) Insert x into list at index i.

<list>.count(x) Returns the number of occurrences of x in list.

<list>.remove(x) Deletes the first occurrence of x in list.

<list>.pop(i) Deletes the ith element of the list and returns its value.



Lists Methods
>>> lst = []
>>> lst.append("lists")

>>> lst

    ['lists’]

>>> lst.append("are")

>>> lst.append("fun")
>>> lst

    ['lists', 'are', 'fun’]

>>> lst.sort()

>>> lst

    ['are', 'fun', 'lists']

>>> lst
    ['lists', 'fun', 'are’]

>>> lst.index("fun")

    1

>>> lst.insert(0, "fun")

>>> lst
    ['fun', 'lists', 'fun', 'are’]

>>> lst.count("fun")

    2

>>> lst.remove("fun")

>>> lst
    ['lists', 'fun', 'are']
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Lists Methods
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n Most list methods either modify the list (e.g. append, 
sort, remove, extend) or leave the list unchanged 
and return a value (e.g. count and index).
n However, the pop method actually does both!

n When you want to remove a specific valued item from 
a list, remove does the job ,whereas pop removes the 
item from a given position.

n Calling pop without a parameter (e.g. lst.pop()) will 
always remove the last item from the list.



Lists Methods
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n Using append is the most common and efficient way 
of adding an item to an existing list.

n It is often used to accumulate a list one item at a 
time.



Lists Methods
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n Here is a fragment of code using a sentinel loop to 
build a list of positive numbers typed by the user:

nums = []

x = float(input('Enter a number: '))
while x >= 0:

    nums.append(x)

    x = float(input('Enter a number: '))



Lists Methods
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n Basic list principles
n A list is a sequence of items stored as a single object.
n Items in a list can be accessed by indexing, and sublists 

can be accessed by slicing.
n Lists are mutable; individual items or entire slices can be 

replaced through assignment statements.
n Lists support a number of convenient and frequently used 

methods.
n Lists will grow and shrink as needed.



Statistics with Lists
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n One way we can solve our statistics problem is to 
store the data in a list.

n We could then write a series of functions that take a 
list of numbers and calculates the mean, standard 
deviation, and median.

n Let’s rewrite our earlier program to use lists to find 
the mean.



Pythonic List Manipulation
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n Python provides list comprehensions as a simple, 
direct way of creating lists.

n Suppose instead of using the sentinel loop in 
getNumbers, we would like to get all of the numbers 
in a single line of input, similar to the decoder 
program in Chapter 8.



Pythonic List Manipulation
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n [<expr> for <variable> in <sequence>]

n Semantically, this creates a new list, with items formed by 
evaluating the expression for each value of the variable as 
it iterates over the sequence.

n List comprehensions are handy for building lists out of other 
sequences and using them produces more concise, 
readable, and efficient solution than writing the equivalent 
accumulator loop.



Pythonic List Manipulation
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n Another trick: make use of functions that take a list an an 
input parameter.
n E.g. to find the maximum value in a list of numbers:
maximum = max(nums)

n There are also built in functions for minimum (min) and sum.



Pythonic List Manipulation
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n There is one more twist on list comprehensions
n You can filter items in the list with an if-clause
n [<expression> for <variable> in <sequence> if <condition>]

n To see how this can be useful, let’s extend our example with 
one more function.

n Extreme values are called “outliers”, and sometimes we want 
to identify those values. One measure that’s sometimes used 
is that any value more than 3 standard deviations from the 
mean is considered an outlier.



Other Data Structures
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n Python lists allow us to store a collection of data as a 
sequence of items.

n In computer science, a way of organizing and storing data 
is called a data structure.

n Selecting or designing an appropriate data structure is 
often a crucial step in solving real-world computing 
problems.



Tuples
n A tuple looks like a list except it is enclosed in 

parantheses () instead of square brackets [].
n A tuple is another sort of sequence, which means it is 

indexable and sliceable.
n Tuples are immutable – the items can’t be changed.
n If the contents of a sequence won’t change after it’s 

created, using a tuple is more efficient than using a 
list.
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Tuples
>>> bp = (120, 80)
>>> type(bp)

    <class 'tuple’>

>>> bp[0]

    120

>>> bp[1]
    80

>>> systolic, diastolic = bp

>>> systolic

    120

>>> diastolic
    80
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Tuples
n Did you notice the simultaneous assignment?
n Another example:

>>> pair = 3, 4

>>> pair

(3, 4)
>>> x, y = pair

>>> x
3

>>> y
4
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Dictionaries
n While dictionaries aren’t covered in this book, we 

briefly discuss them here since they show up so 
frequently “in the wild”.

n Dictionaries store collections.
n Lists allow us to store and retrieve items from sequential 

collections. We do lookups by its index, or position.
n A mapping is collection that allows us to look up 

information based on arbitrary keys.
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Dictionaries
n When would this be useful?

n Looking up data based on student ID numbers
n Locate someone based on phone number
n Get a list of users based on zip code

n In programming terms, these are examples of key-
value pairs. We access the value (student information) 
based on some key (their ID number).
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Tuples
n Dictionaries are created by listing key-value pairs 

inside of curly braces. Keys and values are joined with 
a “:” and commas separate pairs.

n passwd = {"guido":"superprogrammer", 
"turing":"genius", "bill":"monopoly"}

>>> passwd["guido"]
    'superprogrammer'
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Dictionaries
n In general, <dictionary>[<key>] returns the object 

associated with the given key.
n Dictionaries are mutable.
>>> passwd["bill"] = "bluescreen“
>>> passwd
    {'turing': 'genius', 'guido': 'superprogrammer', 
'bill': 'bluescreen’}

n Notice that the dictionary prints out in a different 
order than it was created. Mappings are unordered.
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