Python Programming:
An Introduction To

!I- Computer Science

Chapter 9
Data Collections

Python Programming, 4/e (Modified by KT)

OOOOOOOOOOOOO

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

AAAAAAAAAAA
NOESENOENT PUBLIS RS SANCE 1965]

i Objectives

= T0 understand the use of lists (arrays) to represent a
sequential collection of data.

= To be familiar with the functions and methods
available for manipulating Python lists.

= 10 understand the use of tuples for grouping a set of
related values.

= To be familiar with Python dictionaries as a data
structure for storing non-sequential collections.

Python Programming, 4/e 2

i Objectives

= T0 be able to write programs that use lists and tuples
to structure and manipulate collections of information.

Python Programming, 4/e 3

i Example Problem: Simple Statistics

= Many programs deal with large collections of similar
information.

= Words in @ document

= Students in a course

« Data from an experiment

= Customers of a business

= Graphics objects drawn on the screen
= Cards in a deck

Python Programming, 4/e

Example Problem: Simple Statistics

Let’s review some code we wrote in chapter 7:

averaged.py
A program to average a set of numbers
ITllustrates sentinel loop using empty string as sentinel

def main () :

sum = 0.0

count = 0
xStr = input ("Enter a number (<Enter> to quit) >> ")
while xStr != "":

x = float (xStr)

sum = sum + X

count = count + 1

xStr = 1nput ("Enter a number (<Enter> to quit) >> ")

print ("\nThe average of the numbers is", sum / count)

Python Programming, 4/e

i Example Problem: Simple Statistics

= This program allows the user to enter a sequence of
numbers, but the program itself doesn’t keep track of
the numbers that were entered — it only keeps a
running total.

= Suppose we want to extend the program to compute
not only the mean, but also the median and standard
deviation.

Python Programming, 4/e 6

i Example Problem: Simple Statistics

= The median is the data value that splits the data into
equal-sized parts.

= For the data [2, 4, 6, 9, 13], the median is 6, since
there are two values greater than 6 and two values
that are smaller.

= One way to determine the median is to store all the
numbers, sort them, and identify the middle value.

Python Programming, 4/e 7

i Example Problem: Simple Statistics

= The standard deviation is a measure of how spread
out the data is relative to the mean.

= If the data is tightly clustered around the mean, then
the standard deviation is small. If the data is more
spread out, the standard deviation is larger.

= The standard deviation is a yardstick to
measure/express how exceptional a value is.

Python Programming, 4/e 8

i Example Problem: Simple Statistics

= [he standard deviation is

|2 = x)?
> n—1
= Here % is the mean, x; represents the /7 data value

and nis the number of data values.

= The expression -x)? is the square of the “deviation”
of an individual item from the mean.

Python Programming, 4/e 9

i Example Problem: Simple Statistics

= The numerator is the sum of these squared
“deviations” across all the data.

= Suppose our data was [2, 4, 6, 9, 13].

"he mean (x) is 6.8

The numerator of the standard deviation is

(6.8 —2)2+(6.8—4)2+ (68 —6)2+(6.8—9)2+ (6.8 —13)2 =748

74.8

S = ﬁ=V18. = 4.32

Python Programming, 4/e

10

i Example Problem: Simple Statistics

= As you can see, calculating the standard deviation not
only requires the mean (which cant be calculated until
all the data is entered), but also each individual data
element!

= We need some way to remember these values as they
are entered

Python Programming, 4/e 11

i Python Lists

= We need a way to store and manipulate an entire
collection of numbers.

= We can't just use a bunch of variables, because we
don’t know many numbers there will be.

= What do we need? Some way of combining an entire
collection of values into one object.

= We've already done something like this before...

Python Programming, 4/e 12

i Python Lists

>>> list (range (10))
(o, 1, 2, 3, 4, 5, o6, 7, 8, 9]
>>> "This 1s an ex-parrot!".split ()
['This', '1is', 'an', 'ex—-parrot!’]
s Both of these familiar functions return a collection of
values denoted by the enclosing square brackets.

= Lists are the most common way of handling collections
of data in a Python program.

Python Programming, 4/e 13

i Lists and Arrays as Sequences

= Python lists are ordered sequences of items. For
instance, a sequence of 7 numbers might be called S
5 = 50/ 51/ 52/ 53/ ey Sn 1

= Specific values in the sequence can be referenced using
subscripts, e.g. the first item is denoted with the subscript 0

(%)

= By using numbers as subscripts, mathematicians can
succinctly summarize computations over |tems In @ sequence
using subscript variables. 2 .

Python Programming, 4/e =0 14

i Lists and Arrays as Sequences

= Suppose the sequence is stored in a variable s. We

could write a loop to calculate the sum of the items in
the sequence like this:

sum = 0
for 1 1n range(n) :
sum = sum + s[i]

= Almost all computer languages have a sequence
structure like this, sometimes called an array.

Python Programming, 4/e 15

i Lists and Arrays as Sequences

= A list or array is a sequence of items where the entire
seqguence is referred to by a single name (i.e. s) and

individual items can be selected by indexing (i.e.
s[1i]).
= In other programming languages, arrays are generally

a fixed size, meaning that when you create the array,
you have to specify how many items it can hold.

= Arrays are generally also Aomogeneous, meaning they
can hold only one data type.

Python Programming, 4/e 16

i Lists and Arrays as Sequences

= Python lists are dynamic. They can grow and shrink
on demand.

= Python lists are also Aeterogeneous, a single list can
hold arbitrary data types.

= Python lists are mutable sequences of arbitrary
objects.

Python Programming, 4/e 17

i Lists Operations
___ Operator _Meaning

<seg> + <seg> Concatenation
<seqg> * <int-expr> Repetition

<seq>|] Indexing
len(<seq>) Length
<seq>[:] Slicing

for <var> in <seqg>: Iteration
<expr> in <seq> Membership (Boolean)

Python Programming, 4/e

18

i Lists Operations

= Except for the membership check, we've used these
operations before on strings.

= The membership operation can be used to see if a

certain value appears anywhere in a sequence.
>>> 1st = [1,2,3,4]

>>> 3 1n 1st

True

Python Programming, 4/e 19

i Lists Operations

= The summing example from earlier can be written like this:

sum = 0
for x 1in s:
sum = sum + X
= Unlike strings, lists are mutable:
>>> 1st = [1,2,3,4]
>>> 1st [3]
4
>>> 1st[3] = "Hello“
>>> 1st
[1, 2, 3, 'Hello']
>>> 1st[2] = 7
>>> 1st

(1, 2, 7, 'Hello']

Python Programming, 4/e

i Lists Operations

= Lists can be created by listing items inside square

brackets.
odds = [1, 3, 5, 7, 9]
food = ["spam", "eggs", "back bacon"]
silly = [1, "spam", 4, "U"]
empty = []

= A list of identical items can be created using the
repetition operator. This command produces a list
containing 50 zeroes:
zeroes = [0] * 50

Python Programming, 4/e

21

Lists Operations

month2.py

A program to print the month abbreviation, given its number.

def main () :
months is a list used as a lookup table
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

n = int (input ("Enter a month number (1-12): "))

print (f"The month abbreviation 1s {months[n-1]}.")

Python Programming, 4/e

i Lists Operations

= In this program there is a list of strings called months
to use as the lookup table.

= This line of code is split over two lines — Python knows
the list isn't finished until the ™1” is encountered. This

makes the code more readable.

= Lists, like strings, are indexed beginning with 0.
months [0] IS "Jan". The nth month is at position n-1.

Python Programming, 4/e 23

i Lists Operations

= It would be trivial to modify this program to print out
the entire month name. Just change the lookup list!

months = ["January", "February", "March", "April",
"May", "June", "July", "Aug—ust",
"September", "October", "November", "December"]

Python Programming, 4/e 24

Lists Methods

<list>.append(x)

<list>.sort()

<list>.reverse()
<list>.index(x)

<list>.insert(i, x)
<list>.count(x)

<list>.remove(x)

<list>.pop(i)

Add element x to end of list.

Sort (order) the list. A comparison function may be
passed as a parameter.

Reverse the list.

Returns index of first occurrence of x.

Insert x into list at index i.

Returns the number of occurrences of x in list.

Deletes the first occurrence of x in list.

Deletes the ith element of the list and returns its value.

Python Programming, 4/e

25

Lists Methods

L

>>>

>

>>>

>>>

>>>

>>>

>>>
>>>

lst = []

lst.append("lists")

st

['lists’]
lst.append ("are")

lst.append ("fun")

1st

['lists'

4

lst.sort ()

st

['are',

'"fun',

'are', 'fun’]

'"lists']

>>>

>>>

>>>
>>>

>>>

>>>
>>>

1st
['lists', 'fun', 'are’]
Ist.index ("fun")

1

lst.insert (0, "fun")
lst

['fun', 'lists', 'fun',
lst.count ("fun")

2

lst.remove ("fun")

lst

['lists', 'fun', 'are']

Python Programming, 4/e

'are’]

26

i Lists Methods

= Most list methods either modify the list (e.g. append,
sort, remove, extend) Or leave the list unchanged

and return a value (e.g. count and index).
=« However, the pop method actually does both!

= When you want to remove a specific valued item from
a list, remove does the job ,whereas pop removes the

item from a given position.

= Calling pop without a parameter (e.g. 1st.pop ()) Will
always remove the last item from the list.

rogramming 27

i Lists Methods

= Using append is the most common and efficient way
of adding an item to an existing list.

n It is often used to accumulate a list one item at a
time.

Python Programming, 4/e 28

i Lists Methods

= Here is a fragment of code using a sentinel loop to
build a list of positive numbers typed by the user:

nums = []

x = float (input ('Enter a number: '))
while x >= 0:

nums . append (x)

x = float(input ('"Enter a number: '))

Python Programming, 4/e

29

i Lists Methods

= Basic list principles
= A list is a sequence of items stored as a single object.

= Items in a list can be accessed by indexing, and sublists
can be accessed by slicing.

= Lists are mutable; individual items or entire slices can be
replaced through assignment statements.

=« Lists support a number of convenient and frequently used
methods.

= Lists will grow and shrink as needed.

Python Programming, 4/e 30

i Statistics with Lists

= One way we can solve our statistics problem is to
store the data in a list.

= We could then write a series of functions that take a
list of numbers and calculates the mean, standard
deviation, and median.

= Let’s rewrite our earlier program to use lists to find
the mean.

Python Programming, 4/e 31

i Pythonic List Manipulation

= Python provides /ist comprehensions as a simple,
direct way of creating lists.

= Suppose instead of using the sentinel loop in
getNumbers, we would like to get all of the numbers

in a single line of input, similar to the decoder
program in Chapter 8.

Python Programming, 4/e (Modified by KT) 32

i Pythonic List Manipulation

m [<expr> for <variable> i1n <sequence>]

= Semantically, this creates a new list, with items formed by
evaluating the expression for each value of the variable as
it iterates over the sequence.

= List comprehensions are handy for building lists out of other
sequences and using them produces more concise,
readable, and efficient solution than writing the equivalent
accumulator loop.

Python Programming, 4/e 33

i Pythonic List Manipulation

s Another trick: make use of functions that take a list an an
Input parameter.

= E.g. to find the maximum value in a list of humbers:
maxlmum = max (nums)

= There are also built in functions for minimum (min) and sum.

Python Programming, 4/e 34

i Pythonic List Manipulation

= There is one more twist on list comprehensions
= You can filter items in the list with an if-clause

s [<expression> for <variable> in <sequence> 1if <condition>]

= 10 see how this can be useful, let’s extend our example with
one more function.

= Extreme values are called “outliers”, and sometimes we want
to identify those values. One measure that's sometimes used

is that any value more than 3 standard deviations from the
mean is considered an outlier.

Python Programming, 4/e 35

i Other Data Structures

= Python lists allow us to store a collection of data as a
sequence of items.

= In computer science, a way of organizing and storing data
is called a gata structure.

= Selecting or designing an appropriate data structure is
often a crucial step in solving real-world computing
problems.

Python Programming, 4/e 36

i Tuples

= A tuple looks like a list except it is enclosed in
parantheses () instead of square brackets [].

= A tuple is another sort of sequence, which means it is
indexable and sliceable.

= Tuples are immutable — the items can’t be changed.

= If the contents of a sequence won't change after it’s
created, using a tuple is more efficient than using a
list.

Python Programming, 4/e 37

i Tuples

>>>
>>>

>>>

>>>

>>>
>>>

>>>

bp = (120,
type (bp)

80)

<class 'tuple’>

bp [0]

120

bp[1]

80
systolic,
systolic
120

diastolic
80

diastolic

Python Programming, 4/e

38

i Tuples

= Did you notice the simultaneous assignment?

= Another example:

>>> palir = 3, 4
>>> pair

(3, 4)
>>> x, y = pailr
>>> X

3
>>> vy

4
Python Programming, 4/e

39

i Dictionaries

= While dictionaries aren’t covered in this book, we
briefly discuss them here since they show up so
frequently “in the wild”.

= Dictionaries store collections.

=« Lists allow us to store and retrieve items from sequential
collections. We do lookups by its index, or position.

= A mapping is collection that allows us to look up
information based on arbitrary keys.

Python Programming, 4/e

40

i Dictionaries

When would this be useful?
= Looking up data based on student ID numbers
= Locate someone based on phone number
= Get a list of users based on zip code
= In programming terms, these are examples of key-

value pairs. We access the value (student information)
based on some key (their ID number).

Python Programming, 4/e 41

i Tuples

= Dictionaries are created by listing key-value pairs
inside of curly braces. Keys and values are joined with
a ":” and commas separate pairs.

m passwd = {"guido":"superprogrammer",
"turing" :"genius", "bill":"monopoly"}

>>> passwd["guido"]
'superprogrammer'

Python Programming, 4/e 42

i Dictionaries

= In general, <dictionary>[<key>] returns the object
associated with the given key.

= Dictionaries are mutable.
>>> passwd["bill"] = "bluescreen"“
>>> passwd

{'turing': 'genius', 'guido': 'superprogrammer',
'b1ll': 'bluescreen’}

= Notice that the dictionary prints out in a different
order than it was created. Mappings are unordered.

Python Programming, 4/e 43

