
Python Programming, 4/e (Modified by KT) 1

Python Programming:
An Introduction To
Computer Science

Chapter 9
Data Collections

Python Programming, 4/e 2

Objectives
n To understand the use of lists (arrays) to represent a

sequential collection of data.
n To be familiar with the functions and methods

available for manipulating Python lists.
n To understand the use of tuples for grouping a set of

related values.
n To be familiar with Python dictionaries as a data

structure for storing non-sequential collections.

Python Programming, 4/e 3

Objectives
n To be able to write programs that use lists and tuples

to structure and manipulate collections of information.

Python Programming, 4/e 4

Example Problem: Simple Statistics
n Many programs deal with large collections of similar

information.
n Words in a document
n Students in a course
n Data from an experiment
n Customers of a business
n Graphics objects drawn on the screen
n Cards in a deck

Example Problem: Simple Statistics
Let’s review some code we wrote in chapter 7:
average4.py
A program to average a set of numbers
Illustrates sentinel loop using empty string as sentinel

def main():
 sum = 0.0
 count = 0
 xStr = input("Enter a number (<Enter> to quit) >> ")
 while xStr != "":
 x = float(xStr)
 sum = sum + x
 count = count + 1
 xStr = input("Enter a number (<Enter> to quit) >> ")
 print("\nThe average of the numbers is", sum / count)

Python Programming, 4/e 5

Example Problem: Simple Statistics
n This program allows the user to enter a sequence of

numbers, but the program itself doesn’t keep track of
the numbers that were entered – it only keeps a
running total.

n Suppose we want to extend the program to compute
not only the mean, but also the median and standard
deviation.

Python Programming, 4/e 6

Example Problem: Simple Statistics
n The median is the data value that splits the data into

equal-sized parts.
n For the data [2, 4, 6, 9, 13], the median is 6, since

there are two values greater than 6 and two values
that are smaller.

n One way to determine the median is to store all the
numbers, sort them, and identify the middle value.

Python Programming, 4/e 7

Example Problem: Simple Statistics
n The standard deviation is a measure of how spread

out the data is relative to the mean.
n If the data is tightly clustered around the mean, then

the standard deviation is small. If the data is more
spread out, the standard deviation is larger.

n The standard deviation is a yardstick to
measure/express how exceptional a value is.

Python Programming, 4/e 8

Example Problem: Simple Statistics
n The standard deviation is

n Here is the mean, represents the ith data value
and n is the number of data values.

n The expression is the square of the “deviation”
of an individual item from the mean.

Python Programming, 4/e 9

𝑠 =
∑ 𝑥̄ − 𝑥! "

𝑛 − 1

𝑥̄ 𝑥)

𝑥̄ − 𝑥! "

Example Problem: Simple Statistics
n The numerator is the sum of these squared

“deviations” across all the data.
n Suppose our data was [2, 4, 6, 9, 13].

n The mean (𝑥̅) is 6.8
n The numerator of the standard deviation is

Python Programming, 4/e 10

6.8 − 2 " + 6.8 − 4 " + 6.8 − 6 " + 6.8 − 9 " + 6.8 − 13 " = 74.8

𝑠 =
74.8
5 − 1

= 18.7 = 4.32

Example Problem: Simple Statistics
n As you can see, calculating the standard deviation not

only requires the mean (which can’t be calculated until
all the data is entered), but also each individual data
element!

n We need some way to remember these values as they
are entered

Python Programming, 4/e 11

Python Lists
n We need a way to store and manipulate an entire

collection of numbers.
n We can’t just use a bunch of variables, because we

don’t know many numbers there will be.
n What do we need? Some way of combining an entire

collection of values into one object.
n We’ve already done something like this before…

Python Programming, 4/e 12

Python Lists
>>> list(range(10))
 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> "This is an ex-parrot!".split()
 ['This', 'is', 'an', 'ex-parrot!’]

n Both of these familiar functions return a collection of
values denoted by the enclosing square brackets.

n Lists are the most common way of handling collections
of data in a Python program.

Python Programming, 4/e 13

Lists and Arrays as Sequences
n Python lists are ordered sequences of items. For

instance, a sequence of n numbers might be called S:
S = s0, s1, s2, s3, …, sn-1

n Specific values in the sequence can be referenced using
subscripts, e.g. the first item is denoted with the subscript 0
(s0)

n By using numbers as subscripts, mathematicians can
succinctly summarize computations over items in a sequence
using subscript variables.

Python Programming, 4/e 14

4
!#$

%&'

𝑠!

Lists and Arrays as Sequences
n Suppose the sequence is stored in a variable s. We

could write a loop to calculate the sum of the items in
the sequence like this:
sum = 0
for i in range(n):
 sum = sum + s[i]

n Almost all computer languages have a sequence
structure like this, sometimes called an array.

Python Programming, 4/e 15

Lists and Arrays as Sequences
n A list or array is a sequence of items where the entire

sequence is referred to by a single name (i.e. s) and
individual items can be selected by indexing (i.e.
s[i]).

n In other programming languages, arrays are generally
a fixed size, meaning that when you create the array,
you have to specify how many items it can hold.

n Arrays are generally also homogeneous, meaning they
can hold only one data type.

Python Programming, 4/e 16

Lists and Arrays as Sequences
n Python lists are dynamic. They can grow and shrink

on demand.
n Python lists are also heterogeneous, a single list can

hold arbitrary data types.
n Python lists are mutable sequences of arbitrary

objects.

Python Programming, 4/e 17

Lists Operations

Python Programming, 4/e 18

Operator Meaning
<seq> + <seq> Concatenation

<seq> * <int-expr> Repetition
<seq>[] Indexing

len(<seq>) Length
<seq>[:] Slicing

for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)

Lists Operations
n Except for the membership check, we’ve used these

operations before on strings.
n The membership operation can be used to see if a

certain value appears anywhere in a sequence.
>>> lst = [1,2,3,4]
>>> 3 in lst
True

Python Programming, 4/e 19

Lists Operations
n The summing example from earlier can be written like this:

sum = 0
for x in s:
 sum = sum + x

n Unlike strings, lists are mutable:
>>> lst = [1,2,3,4]
>>> lst[3]
4
>>> lst[3] = "Hello“
>>> lst
[1, 2, 3, 'Hello']
>>> lst[2] = 7
>>> lst
[1, 2, 7, 'Hello']

Python Programming, 4/e 20

Lists Operations
n Lists can be created by listing items inside square

brackets.
odds = [1, 3, 5, 7, 9]
food = ["spam", "eggs", "back bacon"]
silly = [1, "spam", 4, "U"]
empty = []

n A list of identical items can be created using the
repetition operator. This command produces a list
containing 50 zeroes:
zeroes = [0] * 50

Python Programming, 4/e 21

Lists Operations
month2.py
A program to print the month abbreviation, given its number.

def main():
 # months is a list used as a lookup table
 months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

 n = int(input("Enter a month number (1-12): "))

 print(f"The month abbreviation is {months[n-1]}.")

Python Programming, 4/e 22

Lists Operations
n In this program there is a list of strings called months

to use as the lookup table.
n This line of code is split over two lines – Python knows

the list isn’t finished until the “]” is encountered. This
makes the code more readable.

n Lists, like strings, are indexed beginning with 0.
months[0] is "Jan". The nth month is at position n-1.

Python Programming, 4/e 23

Lists Operations
n It would be trivial to modify this program to print out

the entire month name. Just change the lookup list!
 months = ["January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"]

Python Programming, 4/e 24

Lists Methods

Python Programming, 4/e 25

Method Meaning

<list>.append(x) Add element x to end of list.

<list>.sort() Sort (order) the list. A comparison function may be
passed as a parameter.

<list>.reverse() Reverse the list.

<list>.index(x) Returns index of first occurrence of x.

<list>.insert(i, x) Insert x into list at index i.

<list>.count(x) Returns the number of occurrences of x in list.

<list>.remove(x) Deletes the first occurrence of x in list.

<list>.pop(i) Deletes the ith element of the list and returns its value.

Lists Methods
>>> lst = []
>>> lst.append("lists")

>>> lst

 ['lists’]

>>> lst.append("are")

>>> lst.append("fun")
>>> lst

 ['lists', 'are', 'fun’]

>>> lst.sort()

>>> lst

 ['are', 'fun', 'lists']

>>> lst
 ['lists', 'fun', 'are’]

>>> lst.index("fun")

 1

>>> lst.insert(0, "fun")

>>> lst
 ['fun', 'lists', 'fun', 'are’]

>>> lst.count("fun")

 2

>>> lst.remove("fun")

>>> lst
 ['lists', 'fun', 'are']

Python Programming, 4/e 26

Lists Methods

Python Programming, 4/e 27

n Most list methods either modify the list (e.g. append,
sort, remove, extend) or leave the list unchanged
and return a value (e.g. count and index).
n However, the pop method actually does both!

n When you want to remove a specific valued item from
a list, remove does the job ,whereas pop removes the
item from a given position.

n Calling pop without a parameter (e.g. lst.pop()) will
always remove the last item from the list.

Lists Methods

Python Programming, 4/e 28

n Using append is the most common and efficient way
of adding an item to an existing list.

n It is often used to accumulate a list one item at a
time.

Lists Methods

Python Programming, 4/e 29

n Here is a fragment of code using a sentinel loop to
build a list of positive numbers typed by the user:

nums = []

x = float(input('Enter a number: '))
while x >= 0:

 nums.append(x)

 x = float(input('Enter a number: '))

Lists Methods

Python Programming, 4/e 30

n Basic list principles
n A list is a sequence of items stored as a single object.
n Items in a list can be accessed by indexing, and sublists

can be accessed by slicing.
n Lists are mutable; individual items or entire slices can be

replaced through assignment statements.
n Lists support a number of convenient and frequently used

methods.
n Lists will grow and shrink as needed.

Statistics with Lists

Python Programming, 4/e 31

n One way we can solve our statistics problem is to
store the data in a list.

n We could then write a series of functions that take a
list of numbers and calculates the mean, standard
deviation, and median.

n Let’s rewrite our earlier program to use lists to find
the mean.

Pythonic List Manipulation

Python Programming, 4/e (Modified by KT) 32

n Python provides list comprehensions as a simple,
direct way of creating lists.

n Suppose instead of using the sentinel loop in
getNumbers, we would like to get all of the numbers
in a single line of input, similar to the decoder
program in Chapter 8.

Pythonic List Manipulation

Python Programming, 4/e 33

n [<expr> for <variable> in <sequence>]

n Semantically, this creates a new list, with items formed by
evaluating the expression for each value of the variable as
it iterates over the sequence.

n List comprehensions are handy for building lists out of other
sequences and using them produces more concise,
readable, and efficient solution than writing the equivalent
accumulator loop.

Pythonic List Manipulation

Python Programming, 4/e 34

n Another trick: make use of functions that take a list an an
input parameter.
n E.g. to find the maximum value in a list of numbers:
maximum = max(nums)

n There are also built in functions for minimum (min) and sum.

Pythonic List Manipulation

Python Programming, 4/e 35

n There is one more twist on list comprehensions
n You can filter items in the list with an if-clause
n [<expression> for <variable> in <sequence> if <condition>]

n To see how this can be useful, let’s extend our example with
one more function.

n Extreme values are called “outliers”, and sometimes we want
to identify those values. One measure that’s sometimes used
is that any value more than 3 standard deviations from the
mean is considered an outlier.

Other Data Structures

Python Programming, 4/e 36

n Python lists allow us to store a collection of data as a
sequence of items.

n In computer science, a way of organizing and storing data
is called a data structure.

n Selecting or designing an appropriate data structure is
often a crucial step in solving real-world computing
problems.

Tuples
n A tuple looks like a list except it is enclosed in

parantheses () instead of square brackets [].
n A tuple is another sort of sequence, which means it is

indexable and sliceable.
n Tuples are immutable – the items can’t be changed.
n If the contents of a sequence won’t change after it’s

created, using a tuple is more efficient than using a
list.

Python Programming, 4/e 37

Tuples
>>> bp = (120, 80)
>>> type(bp)

 <class 'tuple’>

>>> bp[0]

 120

>>> bp[1]
 80

>>> systolic, diastolic = bp

>>> systolic

 120

>>> diastolic
 80

Python Programming, 4/e 38

Tuples
n Did you notice the simultaneous assignment?
n Another example:

>>> pair = 3, 4

>>> pair

(3, 4)
>>> x, y = pair

>>> x
3

>>> y
4

Python Programming, 4/e 39

Dictionaries
n While dictionaries aren’t covered in this book, we

briefly discuss them here since they show up so
frequently “in the wild”.

n Dictionaries store collections.
n Lists allow us to store and retrieve items from sequential

collections. We do lookups by its index, or position.
n A mapping is collection that allows us to look up

information based on arbitrary keys.

Python Programming, 4/e 40

Dictionaries
n When would this be useful?

n Looking up data based on student ID numbers
n Locate someone based on phone number
n Get a list of users based on zip code

n In programming terms, these are examples of key-
value pairs. We access the value (student information)
based on some key (their ID number).

Python Programming, 4/e 41

Tuples
n Dictionaries are created by listing key-value pairs

inside of curly braces. Keys and values are joined with
a “:” and commas separate pairs.

n passwd = {"guido":"superprogrammer",
"turing":"genius", "bill":"monopoly"}

>>> passwd["guido"]
 'superprogrammer'

Python Programming, 4/e 42

Dictionaries
n In general, <dictionary>[<key>] returns the object

associated with the given key.
n Dictionaries are mutable.
>>> passwd["bill"] = "bluescreen“
>>> passwd
 {'turing': 'genius', 'guido': 'superprogrammer',
'bill': 'bluescreen’}

n Notice that the dictionary prints out in a different
order than it was created. Mappings are unordered.

Python Programming, 4/e 43

