
Python Programming:
An Introduction to
Computer Science

Chapter 8
Strings

Python Programming, 4/e (Modified by KT)

Objectives
n To understand the string data type and

how strings are represented in the
computer.

n To become familiar with various
operations that can be performed on
strings through built-in functions and
string methods.

Python Programming, 4/e

Objectives
n To understand the basic idea of sequences

and indexing as they apply to Python strings
and lists.

n To be able to apply string formatting to
produce attractive, informative program
output.

n To understand basic concepts of
cryptography.

n To be able to understand and write programs
that process textual information.

Python Programming, 4/e

The String Data Type
n The most common use of personal

computers is word processing.
n Text is represented in programs by the

string data type.
n A string is a sequence of characters

enclosed within quotation marks (") or
apostrophes (').

Python Programming, 4/e

The String Data Type
>>> str1="Hello"
>>> str2='spam'
>>> print(str1, str2)
Hello spam
>>> type(str1)
<class 'str'>
>>> type(str2)
<class 'str'>

Python Programming, 4/e

The String Data Type
n Getting a string as input
>>> firstName = input("Please enter your name: ")
Please enter your name: John
>>> print("Hello", firstName)
Hello John

n Notice how we saved the user’s name with a variable to
print the name back out again.

Python Programming, 4/e

Python Programming, 4/e 7

The String Data Type
n We can access the individual characters

in a string through indexing.
n The positions in a string are numbered

from the left, starting with 0.
n The general form is <string>[<expr>],

where the value of expr determines
which character is selected from the
string.

Python Programming, 4/e 8

The String Data Type

>>> greet = "Hello Bob"
>>> greet[0]
'H'
>>> print(greet[0], greet[2], greet[4])
H l o
>>> x = 8
>>> print(greet[x - 2])
B

The Python shell shows us the value of strings by putting them in single quotes; when we print the
string, Python does not put any quotes around the sequence of characters.

H e l l o B o b

0 1 2 3 4 5 6 7 8

Python Programming, 4/e 9

The String Data Type

n In a string of n characters, the last character
is at position n-1 since we start counting with
0.

n We can index from the right side using
negative indexes.

>>> greet[-1]
'b'
>>> greet[-3]
'B'

H e l l o B o b

0 1 2 3 4 5 6 7 8

Python Programming, 4/e 10

The String Data Type
n Indexing returns a string containing a

single character from a larger string.
n We can also access a contiguous

sequence of characters, called a
substring, through a process called
slicing.

Python Programming, 4/e 11

The String Data Type
Slicing:
n <string>[<start>:<end>]

n start and end should both be ints
n The slice contains the substring

beginning at position start and runs up
to but doesn’t include the position
end.

Python Programming, 4/e 12

The String Data Type

>>> greet[0:3]
'Hel'
>>> greet[5:9]
' Bob'
>>> greet[:5]
'Hello'
>>> greet[5:]
' Bob'
>>> greet[:]
'Hello Bob'

H e l l o B o b

0 1 2 3 4 5 6 7 8

Python Programming, 4/e 13

The String Data Type
n If either expression is missing, then the

start or the end of the string are used.
n Can we put two strings together into a

longer string?
n Concatenation “glues” two strings

together (+)
n Repetition builds up a string by multiple

concatenations of a string with itself (*)

Python Programming, 4/e 14

The String Data Type
n The function len will return the length of a

string.
>>> "spam" + "eggs"
'spameggs'
>>> "Spam" + "And" + "Eggs"
'SpamAndEggs'
>>> 3 * "spam"
'spamspamspam'
>>> "spam" * 5
'spamspamspamspamspam'
>>> (3 * "spam") + ("eggs" * 5)
'spamspamspameggseggseggseggseggs'

Python Programming, 4/e 15

The String Data Type
>>> len("spam")
4
>>> for ch in "Spam!":
 print (ch, end=" ")

S p a m !

Python Programming, 4/e 16

The String Data Type
Operator Meaning

+ Concatenation
* Repetition

<string>[] Indexing
<string>[:] Slicing

len(<string>) Length
for <var> in <string> Iteration through characters

Python Programming, 4/e 17

Simple String Processing

n Usernames on a computer system
n First initial, first seven characters of last name

get user’s first and last names
first = input("Please enter your first name (all lowercase): ")
last = input("Please enter your last name (all lowercase): ")

concatenate first initial with 7 chars of last name
uname = first[0] + last[:7]

Python Programming, 4/e 18

Simple String Processing
>>>
Please enter your first name (all lowercase): john
Please enter your last name (all lowercase): doe
uname = jdoe

>>>
Please enter your first name (all lowercase): donna
Please enter your last name (all lowercase):
rostenkowski

uname = drostenk

Python Programming, 4/e 19

Simple String Processing
n Another use – converting an int that

stands for the month into the three
letter abbreviation for that month.

n Store all the names in one big string:
n “JanFebMarAprMayJunJulAugSepOctNovDec”
n Use the month number as an index for

slicing this string:
n monthAbbrev = months[pos:pos+3]

Python Programming, 4/e 20

Simple String Processing
Month Number Position

Jan 1 0
Feb 2 3
Mar 3 6
Apr 4 9

§ To get the correct position, subtract one
from the month number and multiply by
three

Python Programming, 4/e 21

Simple String Processing
month.py
A program to print the abbreviation of a month, given its number

def main():

 # months is used as a lookup table
 months = "JanFebMarAprMayJunJulAugSepOctNovDec"

 n = int(input("Enter a month number (1-12): "))

 # compute starting position of month n in months
 pos = (n-1) * 3

 # Grab the appropriate slice from months
 monthAbbrev = months[pos:pos+3]

 # print the result
 print ("The month abbreviation is", monthAbbrev + ".")

Python Programming, 4/e 22

Simple String Processing
>>> main()
Enter a month number (1-12): 1
The month abbreviation is Jan.
>>> main()
Enter a month number (1-12): 12
The month abbreviation is Dec.
n One weakness – this method only works

where the potential outputs all have the same
length.

n How could you handle spelling out the
months?

Python Programming, 4/e 23

String Representation
n Inside the computer, strings are

represented as sequences of 1’s and
0’s, just like numbers.

n A string is stored as a sequence of
binary numbers, one number per
character.

n It doesn’t matter what value is assigned
as long as it’s done consistently.

Python Programming, 4/e 24

String Representation
n In the early days of computers, each

manufacturer used their own encoding
of numbers for characters.

n ASCII system (American Standard Code
for Information Interchange) uses
numbers between 0 and 127.

n Python supports Unicode (100,000+
characters)

Python Programming, 4/e 25

String Representation
n The ord function returns the numeric

(ordinal) code of a single character.
n The chr function converts a numeric code to

the corresponding character.
>>> ord("A")
65
>>> ord("a")
97
>>> chr(97)
'a'
>>> chr(65)
'A'

String Representation

The smallest addressable memory unit is generally 8 bits, called a
byte.
8 bits can be used to encode up to 256 values, more than enough for
ASCII.
Unicode is different in that it uses various encoding schemes to pack
Unicode characters into sequences of bytes.
The most common encoding used for this is called UTF-8. UTF-8
uses between one (for Latin alphabets) and four bytes for some of
the more exotic characters.

Python Programming, 4/e 27

Programming an Encoder
n Using ord and char we can convert a string

into and out of numeric form.
n The encoding algorithm is simple:
get the message to encode
for each character in the message:

 print the letter number of the character
n A for loop iterates over a sequence of

objects, so the for loop looks like:
 for ch in <string>

Python Programming, 4/e 28

Programming an Encoder
text2numbers.py
A program to convert a textual message into a sequence of
numbers, utlilizing the underlying Unicode encoding.

def main():
 print("This program converts a textual message into a sequence")
 print ("of numbers representing the Unicode encoding of the message.\n")

 # Get the message to encode
 message = input("Please enter the message to encode: ")

 print("\nHere are the Unicode codes:")

 # Loop through the message and print out the Unicode values
 for ch in message:
 print(ord(ch), end=" ")

 print() # blank line before prompt

Python Programming, 4/e 29

Programming a Decoder
n We now have a program to convert messages into

a type of “code”, but it would be nice to have a
program that could decode the message!

n The outline for a decoder:
get the sequence of numbers to decode
message = ""
for each number in the input:
 convert the number to the appropriate character
 add the character to the end of the message
print message

Python Programming, 4/e 30

Programming a Decoder
n The variable message is an accumulator

variable, initially set to the empty string,
the string with no characters ("").

n Each time through the loop, a number
from the input is converted to the
appropriate character and appended to
the end of the accumulator.

Python Programming, 4/e 31

Programming a Decoder
n How do we get the sequence of numbers to decode?

We don’t know how many numbers there will be!
n Read the input as a single string, then split it apart

into substrings, each of which represents one
number.

n Iterate through the list of smaller strings, convert
each into a number and use that number to produce
the corresponding Unicode character.

Python Programming, 4/e 32

Programming a Decoder
The new algorithm
get the sequence of numbers as a string, inString
split inString into a sequence of smaller strings
message = ""
for each of the smaller strings:
 change the string of digits into the number it represents
 append the Unicode character for that number to message
print message

Python Programming, 4/e 33

Programming a Decoder
n Strings are objects and have useful

methods associated with them
n One of these methods is split. This will

split a string into substrings based on
spaces.

>>> "Hello string methods!".split()
['Hello', 'string', 'methods!']

Python Programming, 4/e 34

Programming a Decoder
n Split can be used on characters other

than space, by supplying the character
as a parameter.

>>> "32,24,25,57".split(",")
['32', '24', '25', '57']

Python Programming, 4/e 35

Programming a Decoder
numbers2text.py
A program to convert a sequence of Unicode numbers into
a string of text.

def main():
 print ("This program converts a sequence of Unicode numbers into")
 print ("the string of text that it represents.\n")

 # Get the message to encode
 inString = input("Please enter the Unicode-encoded message: ")

 # Loop through each substring and build Unicde message
 message = ""
 for numStr in inString.split():
 # convert the (sub)string to a number
 codeNum = int(numStr)
 # append character to message
 message = message + chr(codeNum)

 print("\nThe decoded message is:", message)

Python Programming, 4/e 36

Programming a Decoder
n The split function produces a list of

substrings. numString gets each
successive substring.

n Each time through the loop, the next
substring is converted to the
appropriate Unicode character and
appended to the end of the
accumulator, message.

Python Programming, 4/e 37

Programming a Decoder

This program converts a textual message into a sequence
of numbers representing the Unicode encoding of the message.

Please enter the message to encode: CS120 is fun!

Here are the Unicode codes:
67 83 49 50 48 32 105 115 32 102 117 110 33

--
This program converts a sequence of Unicode numbers into
the string of text that it represents.

Please enter the ASCII-encoded message: 67 83 49 50 48 32 105 115 32 102 117 110 33
The decoded message is: CS120 is fun!

Python Programming, 4/e 38

From Encoding to Encryption
n The process of encoding information for the

purpose of keeping it secret or transmitting it
privately is called encryption.

n Cryptography is the study of encryption
methods.

n Encryption is used when transmitting credit
card and other personal information to a web
site.

Python Programming, 4/e 39

From Encoding to Encryption
n Strings are represented as a sort of

encoding problem, where each
character in the string is represented as
a number that’s stored in the computer.

n The code that is the mapping between
character and number is an industry
standard, so it’s not “secret”.

Python Programming, 4/e 40

From Encoding to Encryption
n The encoding/decoding programs we

wrote use a substitution cipher, where
each character of the original message,
known as the plaintext, is replaced by a
corresponding symbol in the cipher
alphabet.

n The resulting code is known as the
ciphertext.

Python Programming, 4/e 41

From Encoding to Encryption
n This type of code is relatively easy to

break.
n Each letter is always encoded with the

same symbol, so using statistical
analysis on the frequency of the letters
and trial and error, the original message
can be determined.

Python Programming, 4/e 42

From Encoding to Encryption
n Modern encryption converts messages

into numbers.
n Sophisticated mathematical formulas

convert these numbers into new
numbers – usually this transformation
consists of combining the message with
another value called the “key”

Python Programming, 3/e 43

From Encoding to Encryption
n To decrypt the message, the receiving end

needs an appropriate key so the encoding
can be reversed.

n In a private key (or shared key) system the
same key is used for encrypting and
decrypting messages. Everyone you know
would need a copy of this key to
communicate with you, but it needs to be
kept a secret.

Python Programming, 3/e 44

From Encoding to Encryption
n In public key encryption, there are separate

keys for encrypting and decrypting the
message.

n In public key systems, the encryption key is
made publicly available, while the decryption
key is kept private.

n Anyone with the public key can send a
message, but only the person who holds the
private key (decryption key) can decrypt it.

Python Programming, 4/e 45

More String Methods
n There are a number of other string methods. Try

them all!
n s.capitalize() – Copy of s with only the first

character capitalized
n s.title() – Copy of s; first character of each word

capitalized
n s.center(width) – Center s in a field of given width

Python Programming, 4/e 46

More String Methods
n s.count(sub) – Count the number of occurrences of

sub in s
n s.find(sub) – Find the first position where sub

occurs in s
n s.join(list) – Concatenate list of strings into one

large string using s as separator.
n s.ljust(width) – Like center, but s is left-justified

Python Programming, 4/e 47

More String Methods
n s.lower() – Copy of s in all lowercase letters
n s.lstrip() – Copy of s with leading whitespace

removed
n s.replace(oldsub, newsub) – Replace

occurrences of oldsub in s with newsub
n s.rfind(sub) – Like find, but returns the right-most

position
n s.rjust(width) – Like center, but s is right-justified

Python Programming, 4/e 48

More String Methods
n s.rstrip() – Copy of s with trailing whitespace

removed
n s.split() – Split s into a list of substrings
n s.upper() – Copy of s; all characters converted to

uppercase

Python Programming, 4/e 49

Better Change Counter
n With what we know now about floating

point numbers, we might be uneasy
about using them in a money situation.

n One way around this problem is to keep
track of money in cents using an int or
long int, and convert it into dollars and
cents when output.

Python Programming, 4/e 50

Better Change Counter
If total is a value in cents (an int),
dollars = total//100
n cents = total%100
n Cents is printed using width 0>2 to

right-justify it with leading 0s (if
necessary) into a field of width 2.

n Thus 5 cents becomes '05'

Python Programming, 4/e 51

Better Change Counter
change2.py
A program to calculate the value of some change in dollars.
This version represents the total cash in cents.

def main():
 print ("Change Counter\n")

 print ("Please enter the count of each coin type.")
 quarters = int(input("Quarters: "))
 dimes = int(input("Dimes: "))
 nickels = int(input("Nickels: "))
 pennies = int(input("Pennies: "))
 total = quarters * 25 + dimes * 10 + nickels * 5 + pennies
 dollars, cents = divmod(total, 100)

 print (f"The total value of your change is ${dollars}.{cents:0>2}.")

Python Programming, 4/e 52

Better Change Counter
>>> main()
Change Counter

Please enter the count of each coin type.
Quarters: 0
Dimes: 0
Nickels: 0
Pennies: 1

The total value of your change is $0.01

>>> main()
Change Counter

Please enter the count of each coin type.
Quarters: 12
Dimes: 1
Nickels: 0
Pennies: 4

The total value of your change is $3.14

