OOOOOOOOOOOOO

Python Programming: PYTHON

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

An Introduction
. %

To Computer Science
Chapter 7

Loop Structures and Booleans

Python Programming, 4/e (Modified by KT)

i Objectives

= 10 understand the concepts of definite and indefinite
loops as they are realized in the Python for and

while statements.

= 10 understand the programming patterns interactive

loop and sentinel loop and their implementations
using a Python while statement.

Python Programming, 4/e 2

i Objectives

= To be able to design and implement solutions to
problems involving loop patterns including nested loop
structures.

= 10 understand the basic ideas of Boolean algebra and
be able to analyze and write Boolean expressions
involving Boolean operators.

Python Programming, 4/e 3

i For Loops: A Quick Review

= The for statement allows us to iterate through a
sequence of values.

for <var> 1n <sequence>:
<body>

= The loop index variable var takes on each successive
value in the sequence, and the statements in the body
of the loop are executed once for each value.

Python Programming, 4/e 4

i For Loops: A Quick Review

= Suppose we want to write a program that can compute the
average of a series of numbers entered by the user.

= To make the program general, it should work with any size
set of numbers.

= We don’t need to keep track of each number entered, we only

need know the running sum and how many numbers have
been added.

Python Programming, 4/e 5

i For Loops: A Quick Review

= Let’s write a program to compute the average of a
series of numbers entered by the user.

= We’ve run into some of these things before!

= A series of numbers could be handled by some sort of loop.
If there are n numbers, the loop should execute 7 times.

= We need a running sum. This will use an accumulator.

Python Programming, 4/e 6

i For Loops: A Quick Review

Input the count of the numbers, n
Initialize total to O
Loop n times

Input a number, X

Add x to total

Output average as total/n

Python Programming, 4/e

i For Loops: A Quick Review

averagel.py

A program to average a set of numbers

it I1llustrates counted loop with accumulator

def main () :

n = int (input ("How many numbers do you have? "))
total = 0.0

for 1 in range(n):
x = float (input ("Enter a number >> "))
total = total + X

print ("\nThe average of the numbers is", total / n)

Python Programming, 4/e

For Loops: A Quick Review

How many numbers do you have? 5

Enter a number >> 32

Enter a number >> 45

Enter number >> 34

Q

number >> 76
number >> 45

FEnter

Q

FEnter

Q

The average of the numbers is 46.4

Python Programming, 4/e

i Indefinite Loops

= [hat last program got the job done, but you need to know
ahead of time how many numbers you’ll be dealing with.

= What we need is a way for the computer to take care of
counting how many numbers there are.

= The for loop is a definite loop, meaning that the number of
iterations is determined when the loop starts.

Python Programming, 4/e 10

i Indefinite Loops

= We can’t use a definite loop unless we know the
number of iterations ahead of time. We can’t know
how many iterations we need until all the numbers
have been entered.

= We need another tool!

= The /naefinite or conditionalloop keeps iterating until
certain conditions are met.

Python Programming, 4/e 11

i Indefinite Loops

m while <condition>:
<body>
= condition Iis a Boolean expression, just like in if
statements. The body is a sequence of one or more
statements.
= Semantically, the body of the loop executes repeatedly as

long as the condition remains true. When the condition is
false, the loop terminates.

Python Programming, 4/e

12

i Indefinite Loops

= The condition is tested at
the top of the loop. This is
known as a pre-testloop. If
the condition is initially false,
the loop body will not
execute at all.

< condition>7

< body>

Python Programming, 4/e

no

13

i Indefinite Loop

= Here’s an example of a while loop that counts from
0 to 10:
i=0

while 1 <= 10:
print (1)
i=1+4+1

= The code has the same output as this for loop:

for 1 1in range(11) :
print (1)

Python Programming, 4/e 14

i Indefinite Loop

= The while loop requires us to manage the loop
variable i by initializing it to 0 before the loop and

incrementing it at the bottom of the body.
= In the for loop this is handled automatically.

Python Programming, 4/e

15

i Indefinite Loop

= The while statement is simple, but yet powerful and

dangerous — they are a common source of program
errors.
m1 = 0
while 1 <= 10:
print (1)

= What happens with this code?

Python Programming, 4/e 16

i Indefinite Loop

= When Python gets to this loop, i is equal to 0, which

is less than 10, so the body of the loop is executed,

printing 0. Now control returns to the condition, and
since 1 is still 0, the loop repeats, etc.

= This is an example of an /nfinite loop.

Python Programming, 4/e 17

i Indefinite Loop

= What should you do if you’re caught in an infinite
loop?
= First, try pressing control-c
« If that doesn’t work, try control-alt-delete
« If that doesn’t work, push the reset button!

Python Programming, 4/e

18

i Interactive Loops

= One good use of the indefinite loop is to write /interactive
foops. Interactive loops allow a user to repeat certain portions
of a program on demand.

= Remember how we said we needed a way for the computer to

keep track of how many numbers had been entered? Let’s
use a counter, called count.

Python Programming, 4/e (Modified by KT) 19

i Interactive Loops

= At each iteration of the loop, ask the user if there is more

data to process. We need to preset it to “yes” to go through
the loop the first time.

m set moredata to “yes”
while moredata 1s “yes”

get the next data 1tem
process the 1tem

ask user 1f there 1s moredata

Python Programming, 4/e 20

i Interactive Loops

= Combining the interactive loop pattern with accumulators for
sum and count:

initialize total to 0.0
initialize count to O
set moredata to “yes”
while moredata 1s “yes”

input a number, x

add x to total

add 1 to count

ask user 1f there 1s moredata
output total/count

Python Programming, 4/e 21

id
id

i Interactive Loops

average2.py

A program to average a set of numbers
Tllustrates interactive loop with two accumulators

def main () :

total = 0.0

count = 0
moredata = "yes"
while moredata[0] == "yes":
x = float (input ("Enter a number >> "))
total = total + x
count = count + 1
moredata = 1nput ("Do you have more numbers (yes or no)?

print ("\nThe average of the numbers is", total / count)

Python Programming, 4/e

")

22

Interactive Loops

Enter a number >> 32
Do you have more numbers (yes
Enter a number >> 45
Do you have more numbers (yes
Enter a number >> 34
Do you have more numbers (yes
Enter a number >> 776
Do you have more numbers (yes
Enter a number >> 45
Do you have more numbers (yes

The average of the numbers 1is

Python Programming, 4/e

or

or

or

or

or

46.

no) ?

no) ?

no) ?

no) ?

no) ?

4

yes

yes

yes

yes

no

23

i Sentinel Loops

= A sentinel loop continues to process data until
reaching a special value that signals the end.

= This special value is called the sentinel.

= The sentinel must be distinguishable from the data
since it is not processed as part of the data.

Python Programming, 4/e

24

i Sentinel Loops

get the first data 1tem

while 1tem 1s not the sentinel
process the i1tem
get the next data 1tem

The first item is retrieved before the loop starts. This is

sometimes called the priming read, since it gets the process

started.

If the first item is the sentinel, the loop terminates and no
data is processed.

Otherwise, the item is processed and the next one is read.

Python Programming, 4/e

25

i Sentinel Loops

= In our averaging example, assume we are averaging
test scores.

= We can assume that there will be no score below 0, so
a negative number will be the sentinel.

Python Programming, 4/e 26

Sentinel Loops

average3.py

id
id

A program to average a set of numbers

Illustrates sentinel loop using negative input as sentinel

def main () :

total = 0.0

count = 0

x = float (input ("Enter a number (negative to quit) >> "))
while x >= 0:

total = total + x
count = count + 1
x = float (input ("Enter a number (negative to quit) >> "))

print ("\nThe average of the numbers is", total / count)

Python Programming, 4/e 27

i Sentinel Loops

Enter a number (negative to quit)
Enter a number (negative to quit)
Enter a number (negative to quit)
Enter a number (negative to quit)
Enter a number (negative to quit)
Enter a number (negative to quit)

The average of the numbers 1s 46.4

Python Programming, 4/e

i Sentinel Loops

= This version provides the ease of use of the
interactive loop without the hassle of typing ‘yes’ all
the time.

= There’s still a shortcoming — using this method we
can’t average a set of positive and negative numbers.

= If we do this, our sentinel can no longer be a number.

Python Programming, 4/e 29

i Sentinel Loops

= We could input all the information as strings.

= Valid input would be converted into numeric form. Use
a character-based sentinel.

= We could use the empty string (*°)!

Python Programming, 4/e 30

i Sentinel Loops

initialize total to 0.0

initialize count to O
input data item as a string, xStr
while xStr i1is not empty
convert xStr to a number, x
add x to total
add 1 to count
input next data item as a string, xStr

output total / count

Python Programming, 4/e

31

i Sentinel Loops

averaged.py

id
id

A program to average a set of numbers

Illustrates sentinel loop using empty string as sentinel

def main () :

total = 0.0
0
xStr = input ("Enter a number (<Enter> to quit) >> ")
while xStr != "":
x = float (xStr)
total = total + x
count = count + 1

count

xStr = input ("Enter a number (<Enter> to quit) >> ")

print ("\nThe average of the numbers is", total / count)

Python Programming, 4/e

32

i Sentinel Loops

Enter
Enter
Enter
Enter
Enter
Enter

FEnter

¥ v v v v O W

number
number
number
number
number
number

number

The average of

(<Enter>
(<Enter>
(<Enter>
(<Enter>
(<Enter>
(<Enter>
(<Enter>

to
to
to
to
to
to
to

the numbers

quit) >>
quit) >>
quit) >>
quit) >>
quit) >>
quit) >>
quit) >>

34
23

=25
-34.4
22.77

is 3.38333333333

Python Programming, 4/e

33

i Computing with Booleans

= 1f and while both use Boolean expressions.
= Boolean expressions evaluate to True or False.

= S0 far we've used Boolean expressions to compare
two values, e.g. (while x >= 0)

Python Programming, 4/e

34

i Boolean Operators

= Sometimes our simple expressions do not seem
expressive enough.

= Suppose you need to determine whether two points
are in the same position — their x coordinates are
equal and their y coordinates are equal.

Python Programming, 4/e 35

Boolean Operators

m 1f pl.getX() == p2.getX() :
1f pl.get¥Y () == p2.getY¥Y():
points are the same
else:

points are different
else:
points are different

= Clearly, this is an awkward way to evaluate multiple Boolean
expressions!

= Let’s check out the three Boolean operators and, or, and

not.
Python Programming, 4/e 36

i Boolean Operators

= The Boolean operators and and or are used to

combine two Boolean expressions and produce a
Boolean result.

m <expr> and <expr>

B <expr> or <expr>

Python Programming, 4/e

37

i Boolean Operators

= The and of two expressions is true exactly when both of the
expressions are true.

= We can represent this in a fruth table.

P Q PandQ
T T T

T F -
F T F
FF -

Python Programming, 4/e 38

i Boolean Expressions

= In the truth table, Pand Q represent smaller Boolean
expressions.

= Since each expression has two possible values, there
are four possible combinations of values.

= The last column gives the value of P and ¢ for each
combination.

Python Programming, 4/e 39

i Boolean Expressions

= The or of two expressions is true when
either expression is true.

-
-
-
.

m <4 - -

-
.
-
.

Python Programming, 4/e

40

i Boolean Expressions

= The only time or is false is when both expressions are
false.

= Also, note that or is true when both expressions are
true. This isnt how we normally use “or” in language.

Python Programming, 4/e 41

i Boolean Operators

= The not operator computes the opposite of
a Boolean expression.

= not IS a unary operator, meaning it
operates on a single expression.

T F
F T

Python Programming, 4/e

42

i Boolean Operators

= We can put these operators together to make
arbitrarily complex Boolean expressions.

= The interpretation of the expressions relies on the
precedence rules for the operators.

Python Programming, 4/e

43

Boolean Operators

Consider a or not b and c
How should this be evaluated?

The order of precedence, from high to low, is not, and, or.

This statement is equivalent to
(a or ((not b) and c))

Since most people dont memorize the Boolean precedence
rules, use parentheses to prevent confusion.

Python Programming, 4/e

44

i Boolean Operators

= T0 test for the co-location of two points, we could use

dn and.
m 1f pl.getX () == pZ2.getX () and p2.getY¥ () == pl.get¥ () :
points are the same
else:

points are different

= The entire condition will be true on/y when both of the
simpler conditions are true.

Python Programming, 4/e 45

i Boolean Operators

= Say you’re writing a racquetball simulation. The game is over
as soon as either player has scored 15 points.

= How can you represent that in a Boolean expression?
m scoreA == 15 or scoreB == 15

= When either of the conditions becomes true, the entire
expression is true. If neither condition is true, the expression
is false.

Python Programming, 4/e 46

i Boolean Operators

= We want to construct a loop that
continues as long as the game is not
over.

= You can do this by taking the negation of
the game-over condition as your loop
condition!

m while not (scorehA == 15 or scoreB == 15):
#continue playing

Python Programming, 4/e

47

i Boolean Operators

= Some racquetball players also use a shutout condition
to end the game, where if one player has scored 7
points and the other person hasn’t scored yet, the

game Is over.
m a == 15 or b == 15 or (a == 7 and b == 0) or (b == 7 and a == 0)

Python Programming, 4/e 48

i Boolean Operators

= Let’s look at volleyball scoring. To win, a volleyball
team needs to win by at least two points.

= In volleyball, a team wins at 15 points

= If the score is 15 — 14, play continues, just as it does
for 21 — 20.

m (a > 15 and a - b > 2) or (b > 15 and b - a >= 2)
m (a >>= 15 or b >= 15) and abs(a - b) >= 2

Python Programming, 4/e 49

i Boolean Algebra

= The ability to formulate, manipulate, and reason with
Boolean expressions is an important skill.

= Boolean expressions obey certain algebraic laws called
Boolean logic or Boolean algebra.

Python Programming, 4/e 50

Boolean Algebra

Boolean algebra

a*0=0 aandfalse == false
a*l=a a and true ==
a+0=a a or false == a

= and has properties similar to multiplication
= or has properties similar to addition

= 0 and 1 correspond to false and true,
respectively.

Python Programming, 4/e

51

i Boolean Algebra

= Anything ored with true is true:

a or True == True

s Both and and or distribute:

(a or (b and c¢)) == ((a or b)
(a and (b or c¢)) == ((a and Db)
= Double negatives cancel out:
(not (not a)) == a
= DeMorgan’s laws:
(not (a or b)) == ((not a) and

(not (a and b)) == ((not a) or

Python Programming, 4/e

and
or

(a or cC))
(a and c))

(not b))
(not b))

52

i Boolean Algebra

We can use these rules to simplify our Boolean

expressions.

while not (scoreA == 15 or scoreB == 15H):
#continue playing

This is saying something like “"While it is not the case

that player A has 15 or player B has 15, continue

playing.”

Applying DeMorgan’s law:

while (not scoreA == 15) and (not scoreB == 15):
#continue playing

Python Programming, 4/e 53

i Boolean Algebra

= [his becomes:

while scoreA != 15 and scoreB != 15
continue playing
= Isn’t this easier to understand? “While player A has
not reached 15 and player B has not reached 15,
continue playing.”

Python Programming, 4/e

54

i Boolean Algebra

= Sometimes it’s easier to figure out when a loop should stop,
rather than when the loop should continue.

= In this case, write the loop termination condition and put a
not in front of it. After a couple applications of DeMorgan’s

law you are ready to go with a simpler but equivalent
expression.

Python Programming, 4/e 55

i Other Common Structures

= The 1f and while can be used to express every
conceivable algorithm.

= For certain problems, an alternative structure can be
convenient.

Python Programming, 4/e 56

i Post-Test Loop

= Say we want to write a program that is supposed to
get a nonnegative number from the user.

= If the user types an incorrect input, the program asks
for another value.

= This process continues until a valid value has been
entered.

= This process is /nput valiaation.

Python Programming, 4/e 57

i Post-Test Loop

repeat

get a number from the user

until number 1is

>= (

yes

Python Programming, 4/e

Get 2 number

no

58

i Post-Test Loop

= When the condition test comes after the body of the
loop it’s called a post-test loop.

= A post-test loop always executes the body of the code
at least once.

= Python doesn’t have a built-in statement to do this,
but we can do it with a slightly modified while loop.

Python Programming, 4/e 59

i Post-Test Loop

= We seed the loop condition so we’re guaranteed to
execute the loop once.

= number = -1 # start with an illegal wvalue
while number < O0: # to get into the loop
number = float (input ("Enter a positive number: "))

= By setting number to —1, we force the loop body to
execute at least once.

Python Programming, 4/e 60

i Post-Test Loop

= Some programmers prefer to simulate a post-test loop
by using the Python break statement.

= EXxecuting break causes Python to immediately exit
the enclosing loop.

s break is sometimes used to exit what looks like an
infinite loop.

Python Programming, 4/e 61

i Post-Test Loop

= The same algorithm implemented with a break:

while True:
number = float (input ("Enter a positive number: "))
if x >= 0: break # Exit loop if number is wvalid

= A while loop continues as long as the expression
evaluates to true. Since True a/ways evaluates to true,
it looks like an infinite loop!

Python Programming, 4/e 62

i Post-Test Loop

= When the value of xis nonnegative, the break
statement executes, which terminates the loop.

= If the body of an if is only one line long, you can
place it right after the :!

= Wouldn't it be nice if the program gave a warning
when the input was invalid?

Python Programming, 4/e 63

i Post-Test Loop

= In the while loop version, this is awkward:

number = -1
while number < 0:
number = float (input ("Enter a positive number: "))

1f number < O:
print ("The number you entered was not positive")

= We're doing the validity check in two places!

Python Programming, 4/e 64

i Post-Test Loop

= Adding the warning to the break version only adds an else

statement:
while True:
number = float (input ("Enter a positive number: "))
1f x >= 0:
break # Exit loop 1f number is valid
else:

print ("The number you entered was not positive.")

Python Programming, 4/e

65

i Loop and a Half

= Stylistically, some programmers prefer the following
approach:

while True:
number = float (input ("Enter a positive number: "))
if x >= 0: break # Loop exit
print ("The number you entered was not positive")

= Here the loop exit is in the middle of the loop body. This
is what we mean by a /oop and a half.

Python Programming, 4/e 66

i Loop and a Half

= The loop and a half is an elegant way to avoid the
priming read in a sentinel loop.

m while True:
get next data 1tem
1f the 1tem 1s the sentinel: break
process the i1tem

= This method is faithful to the idea of the sentinel loop,
the sentinel value is not processed!

Python Programming, 4/e 67

i Loop and a Half

Get next Data item

yes
Item is the sentinel?

Process the item

l

Python Programming, 4/e

68

i Loop and a Half

= TO use or not use break. That is the question!

= The use of break is mostly a matter of style and taste.

= Avoid using break often within loops, because the
logic of a loop is hard to follow when there are
multiple exits.

Python Programming, 4/e 69

Boolean Expressions

i as Decisions

= Boolean expressions can be used as control
structures themselves.

= Suppose you’re writing a program that keeps
going as long as the user enters a response of
6y9.

= One way you could do it:

while response == "y" or response == "Y":

Python Programming, 4/e

70

i Boolean Expressions as Decisions

s Be careful! You can’t take shortcuts:
while response == "y" or "Y":

= Why doesn't this work?

= Python has a bool type that internally uses 1 and 0 to
represent True and False, respectively.

= The Python condition operators, like ==, always evaluate to a
value of type bool.

Python Programming, 4/e 71

i Boolean Expressions as Decisions

= However, Python will let you evaluate any built-in data

type as a Boolean. For numbers (int, float, and long
ints), zero is considered False, anything else is

considered True.

Python Programming, 4/e 72

Boolean Expressions as Decisions

>>> bool (0)

False

>>> pbool (1)

True

>>> bool (32)

True

>>> bool ("Hello")
True

>>> bool ("")
False

>>> bool([1,2,3])
True

>>> bool ([])
False

Python Programming, 4/e

73

i Boolean Expressions as Decisions

= An empty sequence is interpreted as False while any
non-empty sequence is taken to mean True.

= The Boolean operators have operational definitions
that make them useful for other purposes.

Python Programming, 4/e 74

i Boolean Expressions as Decisions

Operator

X and y

X ory

not X

Operational definition

If x is false, return x.
Otherwise, return y.

If x is true, return Xx.
Otherwise, returny.

If x is false, return True.
Otherwise, return False.

Python Programming, 4/e

75

i Boolean Expressions as Decisions

= Consider x and). In order for this to be true, both x
and y must be true.

= As soon as one of them is found to be false, we know
the expression as a whole is false and we don’t need
to finish evaluating the expression.

= S0, if xis false, Python should return a false result,
namely x.

Python Programming, 4/e 76

i Boolean Expressions as Decisions

= If xis true, then whether the expression as a whole is
true or false depends on .

= By returning y, if yis true, then true is returned. If y
is false, then false is returned.

Python Programming, 4/e 77

i Boolean Expressions as Decisions

= These definitions show that Python’s Booleans are
short-circuit operators, meaning that a true or false is
returned as soon as the result is known.

= In an and where the first expression is false and in an
or, Where the first expression is true, Python will not

evaluate the second expression.

Python Programming, 4/e 78

i Boolean Expressions as Decisions

response == "y" or "Y"
The Boolean operator is combining two operations.

Here's an equivalent expression:

(response == "y") or ("Y")

By the operational description of or, this expression returns
either True, if response[0] equals “y”, or “Y”, both of which
are interpreted by Python as true.

Python Programming, 4/e 79

i Boolean Expressions as Decisions

= Sometimes we write programs that prompt for

information but offer a default value obtained by
simply pressing <Enter>

= Since the string used by ans can be treated as a
Boolean, the code can be further simplified.

Python Programming, 4/e 80

i Boolean Expressions as Decisions

m ans = 1nput ("What flavor of you want [vanilla]l: ")
1f ans:
flavor = ans
else:
flavor = "vanilla"

= If the user just hits <Enter>, ans will be an
empty string, which Python interprets as false.

Python Programming, 4/e 81

i Boolean Expressions as Decisions

= We can code this even more succinctly!

ans = 1nput ("What flavor do you want [vanilla]: ")
flavor = ans or "vanilla"

= Remember, any non-empty answer is interpreted as
True.

= This exercise could be boiled down into one line!
flavor = input ("What flavor do you want [vanilla]l:") or "vanilla"

Python Programming, 4/e (Modified by KT)

82

Boolean Expressions

i as Decisions

= Again, if you understand this method, feel free to
utilize it. Just make sure that if your code is tricky,
that it’s well documented!

Python Programming, 4/e

83

