
Python Programming, 4/e (Modified by KT) 1

Python Programming:
An Introduction to
Computer Science

Chapter 6
Decision Structures

Python Programming, 4/e 2

Objectives
n To understand the simple decision programming

pattern and its implementation using a Python if
statement.

n To understand the two-way decision programming
pattern and its implementation using a Python if-
else statement.

Python Programming, 4/e 3

Objectives
n To understand the multi-way decision programming

pattern and its implementation using a Python if-
elif-else statement.

n To understand the idea of exception handling and be
able to write simple exception handling code that
catches standard Python run-time errors.

Python Programming, 4/e 4

Objectives
n To understand the concept of Boolean expressions

and the bool data type.
n To be able to read, write, and implement algorithms

that employ decision structures, including those that
employ sequences of decisions and nested decision
structures.

Python Programming, 4/e 5

Simple Decisions
n So far, we’ve viewed programs as sequences of

instructions that are followed one after the other.
n While this is a fundamental programming concept, it is

not sufficient in itself to solve every problem. We need
to be able to alter the sequential flow of a program to
suit a particular situation.

Python Programming, 4/e 6

Simple Decisions
n Control structures allow us to alter this sequential

program flow.
n In this chapter, we’ll learn about decision structures,

which are statements that allow a program to execute
different sequences of instructions for different cases,
allowing the program to “choose” an appropriate
course of action.

Python Programming, 4/e 7

Example:
Temperature Warnings

n Let’s return to our Celsius to Fahrenheit temperature conversion
program from Chapter 2.

convert.py
A program to convert Celsius temps to Fahrenheit
by: Susan Computewell

def main():
 celsius = float(input("What is the Celsius temperature? "))
 fahrenheit = 9/5 * celsius + 32
 print("The temperature is", fahrenheit, "degrees Fahrenheit.")

Python Programming, 4/e 8

Example:
Temperature Warnings
n Let’s say we want to modify the program to print a

warning when the weather is extreme.
n Any temperature over 90 degrees Fahrenheit and

lower than 30 degrees Fahrenheit will cause a hot and
cold weather warning, respectively.

Python Programming, 4/e (Modified by KT) 9

Example:
Temperature Warnings
Input the temperature in degrees Celsius
(call it celsius)
Calculate fahrenheit as 9/5 celsius + 32
Output fahrenheit
If fahrenheit > 90
 print a heat warning
If fahrenheit < 30
 print a cold warning

Python Programming, 4/e 10

Example:
Temperature Warnings
n This new algorithm has two simple decisions at the

end. The indentation indicates that a step should be
performed only if the condition listed in the previous
line is true.

Python Programming, 4/e 11

Example:
Temperature Warnings

Python Programming, 4/e 12

Example:
Temperature Warnings

convert2.py
A program to convert Celsius temps to Fahrenheit.
This version issues heat and cold warnings.

def main():
 celsius = float(input("What is the Celsius temperature? "))
 fahrenheit = 9 / 5 * celsius + 32
 print("The temperature is", fahrenheit, "degrees fahrenheit.")
 if fahrenheit > 90:
 print("It's really hot out there, be careful!")
 if fahrenheit < 30:
 print("Brrrrr. Be sure to dress warmly")

main()

Python Programming, 4/e 13

Example:
Temperature Warnings
n The Python if statement is used to implement the

decision.
n if <condition>:
 <body>

n The body is a sequence of one or more statements
indented under the if heading.

Python Programming, 4/e 14

Example:
Temperature Warnings
n The semantics of the if should be clear.

n First, the condition in the heading is evaluated.
n If the condition is true, the sequence of statements in the body is

executed, and then control passes to the next statement in the
program.

n If the condition is false, the statements in the body are skipped, and
control passes to the next statement in the program.

Python Programming, 4/e 15

Example:
Temperature Warnings

Python Programming, 4/e 16

Example:
Temperature Warnings
n The body of the if either executes or not depending

on the condition. In any case, control then passes to
the next statement after the if.

n This is a one-way or simple decision.

Python Programming, 4/e 17

Forming Simple Conditions
n What does a condition look like?
n At this point, let’s use simple comparisons.
n <expr> <relop> <expr>

n <relop> is short for relational operator

Python Programming, 4/e 18

Forming Simple Conditions
Python Mathematics Meaning

< < Less than
<= ≤ Less than or equal to
== = Equal to
>= ≥ Greater than or equal to
> > Greater than
!= ≠ Not equal to

Python Programming, 4/e 19

Forming Simple Conditions
n Notice the use of == for equality. Since Python uses =

to indicate assignment, a different symbol is required
for the concept of equality.

n A common mistake is using = in conditions!

Python Programming, 4/e 20

Forming Simple Conditions
n Conditions may compare either numbers or strings.
n When comparing strings, the ordering is lexicographic,

meaning that the strings are sorted based on the
underlying Unicode. Because of this, all upper-case
Latin letters come before lower-case letters. (“Bbbb”
comes before “aaaa”)

Python Programming, 4/e (Modified by KT) 21

Forming Simple Conditions
n Conditions are based on Boolean expressions, named for the

English mathematician George Boole.
n When a Boolean expression is evaluated, it produces either a

value of True (meaning the condition holds), or it produces
False (it does not hold).

n Some computer languages use 1 and 0 to represent “true”
and “false”. Python does NOT.

Python Programming, 4/e 22

Forming Simple Conditions
n Boolean conditions are of type bool and the Boolean values

of true and false are represented by the literals True and
False.

>>> 3 < 4
True
>>> 3 * 4 < 3 + 4
False
>>> "hello" == "hello"
True
>>> "Hello" < "hello"
True

Python Programming, 4/e 23

Example: Conditional Program Execution
n There are several ways of running Python programs.

n Some modules are designed to be run directly. These are referred to
as programs or scripts.

n Others are made to be imported and used by other programs. These
are referred to as libraries.

n Sometimes we want to create a hybrid that can be used both as a
stand-alone program and as a library.

Python Programming, 4/e 24

Example: Conditional Program Execution
n When we want to start a program once it’s loaded, we

include the line main() at the bottom of the code.
n Since Python evaluates the lines of the program

during the import process, our current programs also
run when they are imported into an interactive Python
session or into another Python program.

Python Programming, 4/e 25

Example: Conditional Program Execution
n Generally, when we import a module, we don’t want

it to execute!
n In a program that can be either run stand-alone or

loaded as a library, the call to main at the bottom
should be made conditional, e.g.
if <condition>:
 main()

Python Programming, 4/e 26

Example: Conditional Program Execution
n Whenever a module is imported, Python creates a

special variable in the module called __name__ to be
the name of the imported module.

n Example:
>>> import math
>>> math.__name__
'math'

Python Programming, 4/e 27

Example: Conditional Program Execution
n When imported, the __name__ variable inside the

math module is assigned the string ‘math’.
n When Python code is run directly and not imported,

the value of __name__ is ‘__main__’. E.g.:
>>> __name__
'__main__'

Python Programming, 4/e 28

Example: Conditional Program Execution
n To recap: if a module is imported, the code in the module will

see a variable called __name__ whose value is the name of
the module.

n When a file is run directly, the code will see the value
‘__main__’.

n We can change the final lines of our programs to:
if __name__ == '__main__':
 main()

n Virtually every Python module ends this way!

Python Programming, 4/e 29

Two-Way Decisions
n In Python, a two-way decision can be implemented by

attaching an else clause onto an if clause.
n This is called an if-else statement:
if <condition>:
 <statements>
else:
 <statements>

Python Programming, 4/e 30

Two-Way Decisions
n When Python encounters this structure, it first evaluates the

condition. If the condition is true, the statements under the
if are executed.

n If the condition is false, the statements under the else are
executed.

n In either case, the statements following the if-else are
executed after either set of statements are executed.

Python Programming, 4/e 31

Multi-Way Decisions
n Imagine if we needed to make a five-way decision

using nesting. The if-else statements would be
nested four levels deep!

n There is a construct in Python that achieves this,
combining an else followed immediately by an if
into a single elif.

Python Programming, 4/e 32

Multi-Way Decisions
n if <condition1>:
 <case1 statements>
elif <condition2>:
 <case2 statements>
elif <condition3>:
 <case3 statements>
…
else:
 <default statements>

Python Programming, 4/e 33

Multi-Way Decisions
n This form sets off any number of mutually exclusive code

blocks.
n Python evaluates each condition in turn looking for the first

one that is true. If a true condition is found, the statements
indented under that condition are executed, and control
passes to the next statement after the entire if-elif-else.

n If none are true, the statements under else are performed.
n The else is optional. If there is no else, it’s possible no

indented block would be executed.

Python Programming, 4/e 34

Exception Handling
n The try statement has the following form:
try:
 <body>
except <ErrorType>:
 <handler>

n When Python encounters a try statement, it attempts to
execute the statements inside the body.

n If there is no error, control passes to the next statement after
the try…except.

Python Programming, 4/e 35

Exception Handling
n If an error occurs while executing the body, Python looks for an

except clause with a matching error type. If one is found, the handler
code is executed.

n The original program generated this error with a negative
discriminant:
Traceback (most recent call last):
 File "C:\Documents and Settings\Terry\My
Documents\Teaching\W04\CS120\Textbook\code\chapter3\quadratic.py", line 21, in -toplevel-
 main()
 File "C:\Documents and Settings\Terry\My Documents\Teaching\W04\CS
120\Textbook\code\chapter3\quadratic.py", line 14, in main
 discRoot = math.sqrt(b * b - 4 * a * c)
ValueError: math domain error

Python Programming, 4/e 36

Exception Handling
n Instead of crashing, the exception handler prints a message

indicating that there are no real roots.
n The try…except can be used to catch any kind of error and

provide for a graceful exit.
n A single try statement can have multiple except clauses.

Python Programming, 4/e 37

Exception Handling
n The multiple excepts act like elifs. If an error occurs,

Python will try each except looking for one that matches the
type of error.

n The bare except at the bottom acts like an else and
catches any errors without a specific match.

n If there was no bare except at the end and none of the
except clauses match, the program would still crash and
report an error.

Python Programming, 4/e 38

Exception Handling
n Exceptions themselves are a type of object.
n If you follow the error type with an identifier in an
except clause, Python will assign to that identifier
the actual exception object.

Python Programming, 4/e 39

Study in Design: Max of Three
n Now that we have decision structures, we can solve

more complicated programming problems. The
negative is that writing these programs becomes
harder!

n Suppose we need an algorithm to find the largest of
three numbers.

Python Programming, 4/e 40

Study in Design: Max of Three
def main():
 x1 = float(input("Please enter three values: "))

 x2 = float(input("Please enter three values: "))

 x3 = float(input("Please enter three values: "))

 # missing code sets max to the value of the largest

 print("The largest value is", maxval)

Python Programming, 4/e 41

Strategy 1:
Compare Each to All
n This looks like a three-way decision, where we need

to execute one of the following:
maxval = x1
maxval = x2
maxval = x3

n All we need to do now is preface each one of these
with the right condition!

Python Programming, 4/e 42

Strategy 1:
Compare Each to All
n Let’s look at the case where x1 is the largest.
n if x1 >= x2 >= x3:
 maxval = x1

n Is this syntactically correct?
n Many languages would not allow this compound condition
n Python does allow it, though. It’s equivalent to

x1 ≥ x2 ≥ x3.

Python Programming, 4/e 43

Strategy 1:
Compare Each to All
n Whenever you write a decision, there are two crucial

questions:
1. When the condition is true, is executing the body of the

decision the right action to take?
n x1 is at least as large as x2 and x3, so assigning maxval to x1 is

OK.
n Always pay attention to borderline values!!

Python Programming, 4/e 44

Strategy 1:
Compare Each to All

2. Secondly, ask the converse of the first question, namely,
are we certain that this condition is true in all cases where
x1 is the max?
n Suppose the values are 5, 2, and 4.
n Clearly, x1 is the largest, but does x1 ≥ x2 ≥ x3 hold?
n We don’t really care about the relative ordering of x2 and x3, so

we can make two separate tests: x1 >= x2 and x1 >= x3.

Python Programming, 4/e 45

Strategy 1:
Compare Each to All
n We can separate these conditions with and!
if x1 >= x2 and x1 >= x3:
 maxval = x1

elif x2 >= x1 and x2 >= x3:
 maxval = x2

else:
 maxval = x3

n We’re comparing each possible value against all the others to
determine which one is largest.

Python Programming, 4/e 46

Strategy 1:
Compare Each to All
n What would happen if we were trying to find the max

of five values?
n We would need four Boolean expressions, each

consisting of four conditions anded together.
n Yuck!

Python Programming, 4/e 47

Strategy 2: Decision Tree
n We can avoid the redundant tests of the previous

algorithm using a decision tree approach.
n Suppose we start with x1 >= x2. This knocks either
x1 or x2 out of contention to be the max.

n If the conidition is true, we need to see which is
larger, x1 or x3.

Python Programming, 4/e 48

Strategy 2: Decision Tree
if x1 >= x2:
 if x1 >= x3:
 maxval = x1
 else:
 maxval = x3
else:
 if x2 >= x3:
 maxval = x2
 else
 maxval = x3

Python Programming, 4/e 49

Strategy 2: Decision Tree

Python Programming, 4/e 50

Strategy 2: Decision Tree
n This approach makes exactly two comparisons,

regardless of the ordering of the original three
variables.

n However, this approach is more complicated than the
first. To find the max of four values you’d need if-
elses nested three levels deep with eight assignment
statements!

Python Programming, 4/e 51

Strategy 3:
Sequential Processing
n How would you solve the problem?
n You could probably look at three numbers and just know

which is the largest. But what if you were given a list of a
hundred numbers?

n One strategy is to scan through the list looking for a big
number. When one is found, mark it, and continue looking. If
you find a larger value, mark it, erase the previous mark, and
continue looking.

Python Programming, 4/e 52

Strategy 3:
Sequential Processing

Python Programming, 4/e 53

Strategy 3:
Sequential Processing
n This idea can easily be translated into Python.
maxval = x1

if x2 > maxval:
 maxval = x2

if x3 > maxval:

 maxval = x3

Python Programming, 4/e 54

Strategy 3:
Sequential Programming
n This process is repetitive and lends itself to using a

loop.
n We prompt the user for a number, we compare it to

our current max, if it is larger, we update the max
value, repeat.

Python Programming, 4/e 55

Strategy 3:
Sequential Programming
program: maxn.py
Finds the maximum of a series of numbers

def main():
 n = int(input("How many numbers are there? "))

 # Set max to be the first value
 max = float(input("Enter a number >> "))

 # Now compare the n-1 successive values
 for i in range(n-1):
 x = float(input("Enter a number >> "))
 if x > max:
 max = x

 print("The largest value is", max)

Python Programming, 4/e 56

Strategy 4:
Use Python
n Python has a built-in function called max that returns

the largest of its parameters.
n def main():

 x1, x2, x3 = eval(input("Please enter three values: "))
 print("The largest value is", max(x1, x2, x3))

Python Programming, 4/e 57

Some Lessons
n There’s usually more than one way to solve a problem.

n Don’t rush to code the first idea that pops out of your
head. Think about the design and ask if there’s a better
way to approach the problem.

n Your first task is to find a correct algorithm. After that,
strive for clarity, simplicity, efficiency, scalability, and
elegance.

Python Programming, 4/e (Modified by KT) 58

Some Lessons
n Be the computer.

n One of the best ways to formulate an algorithm is to ask
yourself how you would solve the problem if you had the
sensibilities of a computer.

n This straightforward approach is often simple, clear, and
efficient enough.

Python Programming, 4/e 59

Some Lessons
n Generality is good.

n Consideration of a more general problem can lead to a
better solution for some special case.

n If the max of n program is just as easy to write as the max
of three, write the more general program because it’s more
likely to be useful in other situations.

Python Programming, 4/e 60

Some Lessons
n Don’t reinvent the wheel.

n If the problem you’re trying to solve is one that lots of
other people have encountered, find out if there’s already a
solution for it!

n As you learn to program, designing programs from scratch
is a great experience!

n Truly expert programmers know when to borrow.

