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Python Programming:
An Introduction to
Computer Science

Chapter 3
Computing with Numbers
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Objectives
n To understand the concept of data types in more 

depth.
n To be familiar with the basic numeric data types in 

Python.
n To understand the fundamental principles of how 

numbers are represented on a computer.
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Objectives (cont.)
n To be able to use the Python math library.
n To understand the accumulator program pattern.
n To be able to read and write programs that process 

numerical data.
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Numeric Data Types
n The information that is stored and manipulated by 

computer programs is referred to as data.
n There are two different kinds of numbers!

n (5, 4, 3, 6) are whole numbers – they don’t have a 
fractional part

n (.25, .10, .05, .01) are decimal fractions
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Numeric Data Types
# change.py

# A program to calculate the value of some change in dollars

def main():
    print("Change Counter")

    print()
    print("Please enter the count of each coin type.")
    quarters = int(input("Quarters: "))

    dimes = int(input("Dimes: "))
    nickels = int(input("Nickels: "))

    pennies = int(input("Pennies: "))
    total = quarters * .25 + dimes * .10 + nickels * .05 + pennies * .01
    print()

    print("The total of your change is", total)

main()
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Numeric Data Types
n Inside the computer, whole numbers and decimal fractions 

are represented quite differently!
n We say that decimal fractions and whole numbers are two 

different data types.
n The data type of an object determines what values it 

can have and what operations can be performed on it.
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Numeric Data Types
n Whole numbers are represented using the integer (int 

for short) data type.
n These values can be positive or negative whole 

numbers.
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Numeric Data Types
n Numbers that can have fractional parts are 

represented as floating point (or float) values.
n How can we tell which is which?

n A numeric literal without a decimal point produces an int 
value

n A literal that has a decimal point is represented by a float 
(even if the fractional part is 0)
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Numeric Data Types
n Python has a special function to tell us the data type of any 

value.
>>> type(3)
<class 'int'>
>>> type(3.1)
<class 'float'>
>>> type(3.0)
<class 'float'>
>>> myInt = 32
>>> type(myInt)
<class 'int'>
>>> 
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Numeric Data Types
n Why do we need two number types?

n Values that represent counts can’t be fractional (you can’t have 3 ½ 
quarters)

n Most mathematical algorithms are very efficient with integers
n The float type stores only an approximation to the real number being 

represented!
n Since floats aren’t exact, use an int whenever possible!
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Numeric Data Types
operator operation

+ addition
- subtraction
* multiplication
/ float division

** exponentiation
abs() absolute value

// integer division
% remainder
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Numeric Data Types
n Operations on ints produce ints, operations on floats produce 

floats (except for /).
>>> 3.0+4.0
7.0
>>> 3+4
7
>>> 3.0*4.0
12.0
>>> 3*4
12
>>> 10.0/3.0
3.3333333333333335
>>> 10/3
3.3333333333333335
>>> 10 // 3
3
>>> 10.0 // 3.0
3.0



Python Programming, 4/e 13

Numeric Data Types
n Division (/) produces a float, while integer 

division (//) can produce a whole number.
n That’s why 10/3 = 3.3333 while 10//3 = 3!
n Think of it as ‘gozinta’, where 10//3 = 3 since 

3 gozinta (goes into) 10 3 times (with a 
remainder of 1)

n 10%3 = 1 is the remainder of the integer 
division of 10 by 3.

n a = (a//b)(b) + (a%b)
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Type Conversions & Rounding
n We know that combining an int with an int produces 

an int, and combining a float with a float produces a 
float.

n What happens when you mix an int and float in an 
expression?
x = 5.0 * 2

n What do you think should happen?
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Type Conversions & Rounding
n For Python to evaluate this expression, it must either 

convert 5.0 to 5 and do an integer multiplication, or 
convert 2 to 2.0 and do a floating point multiplication.

n Converting a float to an int will lose information
n Ints can be converted to floats by adding “.0”
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Type Conversion & Rounding
n In mixed-typed expressions Python will convert ints to 

floats.
n Sometimes we want to control the type conversion. 

This is called explicit typing.
n Converting to an int simply discards the fractional 

part of a float – the value is truncated, not rounded.



Type Conversion & Rounding
n To round off numbers, use the built-in round function 

which rounds to the nearest whole value.
n If you want to round a float into another float value, 

you can supply a second parameter that specifies the 
number of digits after the decimal point.
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Type Conversions & Rounding
>>> float(22//5)
4.0
>>> int(4.5)
4
>>> int(3.9)
3
>>> round(3.9)

4

>>> round(3)
3

>>> round(3.1415926, 2)

3.14



Type Conversions & Rounding
>>> int("32")

32

>>> float("32")

32.0

str(10)
'10'

str(10.0)

'10.0'

int("10.5")

Traceback (most recent call last):

  File "<pyshell#13>", line 1, in <module>

    int("10.5")
ValueError: invalid literal for int() with base 10: '10.5'
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Using the Math Library
n Besides (+, -, *, /, //, **, %, abs), we have lots of 

other math functions available in a math library.
n A library is a module with some useful 

definitions/functions.
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Using the Math Library
n Let’s write a program to help us discover favorable 

dimensions for a beaker that we are planning to 
have participants 3D print in a makerspace class.

n Participants will use the beaker in a subsequent 
makerspace class where they will be mixing a magic 
potion and sealing it in a 10-ounce bottle.

n We want the interior of the beaker to be a cylinder 
that holds between 10 and 11 ounces.
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Using the Math Library

volume = pi * pow(radius, 2) * height

fluid_ounces = 0.554113 * cubic_inches
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Using the Math Library
n The program, 

create_favorable_beaker_inner_dimensions, is 
included with the downloadable files for this chapter.

n We are going to use a constant (pi) and a function 
(pow) from the Python math library.
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Using the Math Library
n To use a library, we need to include this line is in our 

program:

    from math import pi, pow

n Importing constants and functions from a library 
makes them available to the program.



Using the Math Library
Python Mathematics English

pi An approximation of pi
e e An approximation of e

sqrt(x) The square root of x
sin(x) sin x The sine of x
cos(x) cos x The cosine of x
tan(x) tan x The tangent of x
asin(x) arcsin x The inverse of sine x
acos(x) arccos x The inverse of cosine x
atan(x) arctan x The inverse of tangent x
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π

𝑥



Using the Math Library
Python Mathematics English

log(x) ln x The natural (base e) logarithm of x
log10(x) The common (base 10) logarithm of x
exp(x) The exponential of x
ceil(x) The smallest whole number >= x
floor(x) The largest whole number <= x
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Accumulating Results: Factorial
n Say you are waiting in a line with five other people. 

How many ways are there to arrange the six people?
n 720 -- 720 is the factorial of 6 (abbreviated 6!)
n Factorial is defined as:

𝑛! = 𝑛 𝑛 − 1 𝑛 − 2 … (1)
n So, 6! = 6*5*4*3*2*1 = 720
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Accumulating Results: Factorial
n How we could we write a program to do this?
n Input number to take factorial of, n
Compute factorial of n, fact
Output fact



Python Programming, 4/e 29

Accumulating Results: Factorial
n How did we calculate 6!?
n 6*5 = 30
n Take that 30, and 30 * 4 = 120
n Take that 120, and 120 * 3 = 360
n Take that 360, and 360 * 2 = 720
n Take that 720, and 720 * 1 = 720
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Accumulating Results: Factorial
n What’s really going on?
n We’re doing repeated multiplications, and we’re keeping track 

of the running product.
n This algorithm is known as an accumulator, because we’re 

building up or accumulating the answer in a variable, known 
as the accumulator variable.
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Accumulating Results: Factorial
n The general form of an accumulator algorithm looks 

like this:
Initialize the accumulator variable

Loop until final result is reached
update the value of accumulator variable
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Accumulating Results: Factorial
n It looks like we’ll need a loop!
fact = 1
for factor in [6, 5, 4, 3, 2, 1]:
fact = fact * factor

n Let’s trace through it to verify that this works!
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Accumulating Results: Factorial
n Why did we need to initialize fact to 1? There are a 

couple reasons…
n Each time through the loop, the previous value of fact is 

used to calculate the next value of fact. By doing the 
initialization, you know fact will have a value the first time 
through.

n If you use fact without assigning it a value, what does 
Python do?
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Accumulating Results: Factorial
n Since multiplication is associative and commutative, 

we can rewrite our program as:
fact = 1
for factor in [2, 3, 4, 5, 6]:
fact = fact * factor

n Great! But what if we want to find the factorial of 
some other number??
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Accumulating Results: Factorial
n What does list(range(n)) return?
[0, 1, 2, 3, …, n-1]

n range has another optional parameter! range(start, 
n) returns
[start, start + 1, …, n-1]

n But wait! There’s more!
range(start, n, step)
[start, start+step, …, n-1]

n list(<sequence>) to make a list
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Accumulating Results: Factorial
n Let’s try some examples!
>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(5,10))

[5, 6, 7, 8, 9]

>>> list(range(5,10,2))

[5, 7, 9]



Python Programming, 4/e 37

Accumulating Results: Factorial
n Using this souped-up range statement, we can do the 

range for our loop a couple different ways.
n We can count up from 2 to n:

range(2, n+1)
(Why did we have to use n+1?)

n We can count down from n to 2:
range(n, 1, -1)
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Accumulating Results: Factorial
n Our completed factorial program:
# factorial.py

#    Program to compute the factorial of a number

#    Illustrates for loop with an accumulator

def main():

    n = int(input("Please enter a whole number: "))
    fact = 1

    for factor in range(n,1,-1): 

       fact = fact * factor

    print("The factorial of", n, "is", fact)

main()
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The Limits of Int
n What is 100!?
>>> main()

Please enter a whole number: 100
The factorial of 100 is 

9332621544394415268169923885626670049071596826438162146859296389
5217599993229915608941463976156518286253697920827223758251185210
916864000000000000000000000000

n Wow! That’s a pretty big number!
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The Limits of Int
n Newer versions of Python can handle it, but…
Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import fact
>>> fact.main()
Please enter a whole number: 13
13
12
11
10
9
8
7
6
5
4
Traceback (innermost last):
  File "<pyshell#1>", line 1, in ?
    fact.main()
  File "C:\PROGRA~1\PYTHON~1.2\fact.py", line 5, in main
    fact=fact*factor
OverflowError: integer multiplication
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The Limits of Int
n What’s going on?

n While there are an infinite number of integers, there is a 
finite range of ints that can be represented.

n This range depends on the number of bits a particular CPU 
uses to represent an integer value.
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The Limits of Int
n Typical PCs use 32 bits or 64.
n In a 32 bit computer there are 232 possible values, 

centered at 0.
n This range then is –231 to 231-1. We need to subtract 

one from the top end to account for 0.
n But our 100! is much larger than this -- even larger 

than 264. How does it work?
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Handling Large Numbers
n Does switching to float data types get us around the 

limitations of ints?
n If we initialize the accumulator to 1.0, we get
>>> main()

Please enter a whole number: 30

The factorial of 30 is 2.652528598121911e+32 

n We no longer get an exact answer!
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Handling Large Numbers: Long Int
n Very large and very small numbers are expressed in scientific 

or exponential notation.
n 2.652528598121911e+32 means 2.652528598121911 * 1032
n Here the decimal needs to be moved right 32 decimal places 

to get the original number, but there are only 16 digits, so 16 
digits of precision have been lost.
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Handling Large Numbers
n Floats are approximations
n Floats allow us to represent a larger range of values, 

but with fixed precision.
n Python has a solution, expanding ints!
n Python ints are not a fixed size and expand to handle 

whatever value it holds.
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Handling Large Numbers
n Newer versions of Python automatically convert your ints to 

expanded form when they grow so large as to overflow.
n We get indefinitely large values (e.g. 100!) at the cost of 

speed and memory


