
Python Programming, 4/e (Modified by KT) 1

Python Programming:
An Introduction to
Computer Science

Chapter 3
Computing with Numbers

Python Programming, 4/e 2

Objectives
n To understand the concept of data types in more

depth.
n To be familiar with the basic numeric data types in

Python.
n To understand the fundamental principles of how

numbers are represented on a computer.

Python Programming, 4/e 3

Objectives (cont.)
n To be able to use the Python math library.
n To understand the accumulator program pattern.
n To be able to read and write programs that process

numerical data.

Python Programming, 4/e 4

Numeric Data Types
n The information that is stored and manipulated by

computer programs is referred to as data.
n There are two different kinds of numbers!

n (5, 4, 3, 6) are whole numbers – they don’t have a
fractional part

n (.25, .10, .05, .01) are decimal fractions

Python Programming, 4/e 5

Numeric Data Types
change.py

A program to calculate the value of some change in dollars

def main():
 print("Change Counter")

 print()
 print("Please enter the count of each coin type.")
 quarters = int(input("Quarters: "))

 dimes = int(input("Dimes: "))
 nickels = int(input("Nickels: "))

 pennies = int(input("Pennies: "))
 total = quarters * .25 + dimes * .10 + nickels * .05 + pennies * .01
 print()

 print("The total of your change is", total)

main()

Python Programming, 4/e 6

Numeric Data Types
n Inside the computer, whole numbers and decimal fractions

are represented quite differently!
n We say that decimal fractions and whole numbers are two

different data types.
n The data type of an object determines what values it

can have and what operations can be performed on it.

Python Programming, 4/e 7

Numeric Data Types
n Whole numbers are represented using the integer (int

for short) data type.
n These values can be positive or negative whole

numbers.

Python Programming, 4/e 8

Numeric Data Types
n Numbers that can have fractional parts are

represented as floating point (or float) values.
n How can we tell which is which?

n A numeric literal without a decimal point produces an int
value

n A literal that has a decimal point is represented by a float
(even if the fractional part is 0)

Python Programming, 4/e 9

Numeric Data Types
n Python has a special function to tell us the data type of any

value.
>>> type(3)
<class 'int'>
>>> type(3.1)
<class 'float'>
>>> type(3.0)
<class 'float'>
>>> myInt = 32
>>> type(myInt)
<class 'int'>
>>>

Python Programming, 4/e 10

Numeric Data Types
n Why do we need two number types?

n Values that represent counts can’t be fractional (you can’t have 3 ½
quarters)

n Most mathematical algorithms are very efficient with integers
n The float type stores only an approximation to the real number being

represented!
n Since floats aren’t exact, use an int whenever possible!

Python Programming, 4/e 11

Numeric Data Types
operator operation

+ addition
- subtraction
* multiplication
/ float division

** exponentiation
abs() absolute value

// integer division
% remainder

Python Programming, 4/e 12

Numeric Data Types
n Operations on ints produce ints, operations on floats produce

floats (except for /).
>>> 3.0+4.0
7.0
>>> 3+4
7
>>> 3.0*4.0
12.0
>>> 3*4
12
>>> 10.0/3.0
3.3333333333333335
>>> 10/3
3.3333333333333335
>>> 10 // 3
3
>>> 10.0 // 3.0
3.0

Python Programming, 4/e 13

Numeric Data Types
n Division (/) produces a float, while integer

division (//) can produce a whole number.
n That’s why 10/3 = 3.3333 while 10//3 = 3!
n Think of it as ‘gozinta’, where 10//3 = 3 since

3 gozinta (goes into) 10 3 times (with a
remainder of 1)

n 10%3 = 1 is the remainder of the integer
division of 10 by 3.

n a = (a//b)(b) + (a%b)

Python Programming, 4/e 14

Type Conversions & Rounding
n We know that combining an int with an int produces

an int, and combining a float with a float produces a
float.

n What happens when you mix an int and float in an
expression?
x = 5.0 * 2

n What do you think should happen?

Python Programming, 4/e 15

Type Conversions & Rounding
n For Python to evaluate this expression, it must either

convert 5.0 to 5 and do an integer multiplication, or
convert 2 to 2.0 and do a floating point multiplication.

n Converting a float to an int will lose information
n Ints can be converted to floats by adding “.0”

Python Programming, 4/e 16

Type Conversion & Rounding
n In mixed-typed expressions Python will convert ints to

floats.
n Sometimes we want to control the type conversion.

This is called explicit typing.
n Converting to an int simply discards the fractional

part of a float – the value is truncated, not rounded.

Type Conversion & Rounding
n To round off numbers, use the built-in round function

which rounds to the nearest whole value.
n If you want to round a float into another float value,

you can supply a second parameter that specifies the
number of digits after the decimal point.

Python Programming, 4/e 17

Python Programming, 4/e 18

Type Conversions & Rounding
>>> float(22//5)
4.0
>>> int(4.5)
4
>>> int(3.9)
3
>>> round(3.9)

4

>>> round(3)
3

>>> round(3.1415926, 2)

3.14

Type Conversions & Rounding
>>> int("32")

32

>>> float("32")

32.0

str(10)
'10'

str(10.0)

'10.0'

int("10.5")

Traceback (most recent call last):

 File "<pyshell#13>", line 1, in <module>

 int("10.5")
ValueError: invalid literal for int() with base 10: '10.5'

Python Programming, 4/e 19

Python Programming, 4/e 20

Using the Math Library
n Besides (+, -, *, /, //, **, %, abs), we have lots of

other math functions available in a math library.
n A library is a module with some useful

definitions/functions.

Python Programming, 4/e (Modified by KT) 21

Using the Math Library
n Let’s write a program to help us discover favorable

dimensions for a beaker that we are planning to
have participants 3D print in a makerspace class.

n Participants will use the beaker in a subsequent
makerspace class where they will be mixing a magic
potion and sealing it in a 10-ounce bottle.

n We want the interior of the beaker to be a cylinder
that holds between 10 and 11 ounces.

Python Programming, 4/e (Modified by KT) 22

Using the Math Library

volume = pi * pow(radius, 2) * height

fluid_ounces = 0.554113 * cubic_inches

Python Programming, 4/e (Modified by KT) 23

Using the Math Library
n The program,

create_favorable_beaker_inner_dimensions, is
included with the downloadable files for this chapter.

n We are going to use a constant (pi) and a function
(pow) from the Python math library.

Python Programming, 4/e (Modified by KT) 24

Using the Math Library
n To use a library, we need to include this line is in our

program:

 from math import pi, pow

n Importing constants and functions from a library
makes them available to the program.

Using the Math Library
Python Mathematics English

pi An approximation of pi
e e An approximation of e

sqrt(x) The square root of x
sin(x) sin x The sine of x
cos(x) cos x The cosine of x
tan(x) tan x The tangent of x
asin(x) arcsin x The inverse of sine x
acos(x) arccos x The inverse of cosine x
atan(x) arctan x The inverse of tangent x

Python Programming, 4/e 25

π

𝑥

Using the Math Library
Python Mathematics English

log(x) ln x The natural (base e) logarithm of x
log10(x) The common (base 10) logarithm of x
exp(x) The exponential of x
ceil(x) The smallest whole number >= x
floor(x) The largest whole number <= x

Python Programming, 4/e 26

log"# 𝑥
𝑒$

𝑥

𝑥

Python Programming, 4/e 27

Accumulating Results: Factorial
n Say you are waiting in a line with five other people.

How many ways are there to arrange the six people?
n 720 -- 720 is the factorial of 6 (abbreviated 6!)
n Factorial is defined as:

𝑛! = 𝑛 𝑛 − 1 𝑛 − 2 … (1)
n So, 6! = 6*5*4*3*2*1 = 720

Python Programming, 4/e 28

Accumulating Results: Factorial
n How we could we write a program to do this?
n Input number to take factorial of, n
Compute factorial of n, fact
Output fact

Python Programming, 4/e 29

Accumulating Results: Factorial
n How did we calculate 6!?
n 6*5 = 30
n Take that 30, and 30 * 4 = 120
n Take that 120, and 120 * 3 = 360
n Take that 360, and 360 * 2 = 720
n Take that 720, and 720 * 1 = 720

Python Programming, 4/e 30

Accumulating Results: Factorial
n What’s really going on?
n We’re doing repeated multiplications, and we’re keeping track

of the running product.
n This algorithm is known as an accumulator, because we’re

building up or accumulating the answer in a variable, known
as the accumulator variable.

Python Programming, 4/e 31

Accumulating Results: Factorial
n The general form of an accumulator algorithm looks

like this:
Initialize the accumulator variable

Loop until final result is reached
update the value of accumulator variable

Python Programming, 4/e 32

Accumulating Results: Factorial
n It looks like we’ll need a loop!
fact = 1
for factor in [6, 5, 4, 3, 2, 1]:
fact = fact * factor

n Let’s trace through it to verify that this works!

Python Programming, 4/e 33

Accumulating Results: Factorial
n Why did we need to initialize fact to 1? There are a

couple reasons…
n Each time through the loop, the previous value of fact is

used to calculate the next value of fact. By doing the
initialization, you know fact will have a value the first time
through.

n If you use fact without assigning it a value, what does
Python do?

Python Programming, 4/e 34

Accumulating Results: Factorial
n Since multiplication is associative and commutative,

we can rewrite our program as:
fact = 1
for factor in [2, 3, 4, 5, 6]:
fact = fact * factor

n Great! But what if we want to find the factorial of
some other number??

Python Programming, 4/e 35

Accumulating Results: Factorial
n What does list(range(n)) return?
[0, 1, 2, 3, …, n-1]

n range has another optional parameter! range(start,
n) returns
[start, start + 1, …, n-1]

n But wait! There’s more!
range(start, n, step)
[start, start+step, …, n-1]

n list(<sequence>) to make a list

Python Programming, 4/e 36

Accumulating Results: Factorial
n Let’s try some examples!
>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(5,10))

[5, 6, 7, 8, 9]

>>> list(range(5,10,2))

[5, 7, 9]

Python Programming, 4/e 37

Accumulating Results: Factorial
n Using this souped-up range statement, we can do the

range for our loop a couple different ways.
n We can count up from 2 to n:

range(2, n+1)
(Why did we have to use n+1?)

n We can count down from n to 2:
range(n, 1, -1)

Python Programming, 4/e 38

Accumulating Results: Factorial
n Our completed factorial program:
factorial.py

Program to compute the factorial of a number

Illustrates for loop with an accumulator

def main():

 n = int(input("Please enter a whole number: "))
 fact = 1

 for factor in range(n,1,-1):

 fact = fact * factor

 print("The factorial of", n, "is", fact)

main()

Python Programming, 4/e 39

The Limits of Int
n What is 100!?
>>> main()

Please enter a whole number: 100
The factorial of 100 is

9332621544394415268169923885626670049071596826438162146859296389
5217599993229915608941463976156518286253697920827223758251185210
916864000000000000000000000000

n Wow! That’s a pretty big number!

Python Programming, 4/e 40

The Limits of Int
n Newer versions of Python can handle it, but…
Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import fact
>>> fact.main()
Please enter a whole number: 13
13
12
11
10
9
8
7
6
5
4
Traceback (innermost last):
 File "<pyshell#1>", line 1, in ?
 fact.main()
 File "C:\PROGRA~1\PYTHON~1.2\fact.py", line 5, in main
 fact=fact*factor
OverflowError: integer multiplication

Python Programming, 4/e 41

The Limits of Int
n What’s going on?

n While there are an infinite number of integers, there is a
finite range of ints that can be represented.

n This range depends on the number of bits a particular CPU
uses to represent an integer value.

Python Programming, 4/e 42

The Limits of Int
n Typical PCs use 32 bits or 64.
n In a 32 bit computer there are 232 possible values,

centered at 0.
n This range then is –231 to 231-1. We need to subtract

one from the top end to account for 0.
n But our 100! is much larger than this -- even larger

than 264. How does it work?

Python Programming, 4/e 43

Handling Large Numbers
n Does switching to float data types get us around the

limitations of ints?
n If we initialize the accumulator to 1.0, we get
>>> main()

Please enter a whole number: 30

The factorial of 30 is 2.652528598121911e+32

n We no longer get an exact answer!

Python Programming, 4/e 44

Handling Large Numbers: Long Int
n Very large and very small numbers are expressed in scientific

or exponential notation.
n 2.652528598121911e+32 means 2.652528598121911 * 1032
n Here the decimal needs to be moved right 32 decimal places

to get the original number, but there are only 16 digits, so 16
digits of precision have been lost.

Python Programming, 4/e 45

Handling Large Numbers
n Floats are approximations
n Floats allow us to represent a larger range of values,

but with fixed precision.
n Python has a solution, expanding ints!
n Python ints are not a fixed size and expand to handle

whatever value it holds.

Python Programming, 4/e 46

Handling Large Numbers
n Newer versions of Python automatically convert your ints to

expanded form when they grow so large as to overflow.
n We get indefinitely large values (e.g. 100!) at the cost of

speed and memory

