
Python Programming, 4/e (Modified by KT) 1

Python Programming:
An Introduction to
Computer Science

Chapter 2
Writing Simple Programs

Objectives

◼ To know the steps in an orderly
software development process.

◼ To understand programs following the
input, process, output (IPO) pattern
and be able to modify them in simple
ways.

◼ To understand the rules for forming
valid Python identifiers and expressions.

Python Programming, 4/e 2

Python Programming, 4/e 3

Objectives

◼ To be able to understand and write
Python statements to output
information to the screen, assign values
to variables, get numeric information
entered from the keyboard, and
perform a counted loop

Python Programming, 4/e 4

The Software Development
Process

◼ The process of creating a program is
often broken down into stages
according to the information that is
produced in each phase.

Python Programming, 4/e 5

The Software Development
Process

◼ Analyze the Problem
◼ Figure out exactly the problem to be

solved. Try to understand it as much as
possible.

Python Programming, 4/e 6

The Software Development
Process

◼ Determine Specifications
◼ Describe exactly what your program will

do.
◼ Don’t worry about how the program will

work, but what it will do.
◼ Includes describing the inputs, outputs,

and how they relate to one another.

Python Programming, 4/e 7

The Software Development
Process

◼ Create a Design
◼ Formulate the overall structure of the

program.

◼ This is where the how of the program gets

worked out.

◼ Develop your own algorithm that meets the
specifications.

Python Programming, 4/e 8

The Software Development
Process

◼ Implement the Design
◼ Translate the design into a computer

language.

◼ In this course we will use Python.

Python Programming, 4/e 9

The Software Development
Process

◼ Test/Debug the Program
◼ Try out your program to see if it worked.

◼ If there are any errors (bugs), they need to

be located and fixed. This process is called

debugging.

◼ Your goal is to find errors, so try
everything that might “break” your

program!

Python Programming, 4/e 10

The Software Development
Process

◼ Maintain the Program
◼ Continue developing the program in

response to the needs of your users.

◼ In the real world, most programs are never
completely finished – they evolve over

time.

Python Programming, 4/e 11

Example Program:
Temperature Converter

◼ Analysis – the temperature is given in

Celsius, user wants it expressed in
degrees Fahrenheit.

◼ Specification
◼ Input – temperature in Celsius

◼ Output – temperature in Fahrenheit

◼ Output = 9/5(input) + 32

Python Programming, 4/e 12

Example Program:
Temperature Converter

◼ Design
◼ Input, Process, Output (IPO)

◼ Prompt the user for input (Celsius

temperature)

◼ Process it to convert it to Fahrenheit using

F = 9/5(C) + 32
◼ Output the result by displaying it on the

screen

Python Programming, 4/e (Modified by KT) 13

Example Program:
Temperature Converter

◼ Before we start coding, let’s write a
rough draft of the program in
pseudocode

◼ Pseudocode is precise English
(imprecise Python) that describes what
a program does, step by step.

◼ Using pseudocode, we can concentrate
on the algorithm rather than the
programming language.

Python Programming, 4/e (Modified by KT) 14

Example Program:
Temperature Converter

◼ Pseudocode:
◼ Input the temperature in degrees Celsius (call

it celsius)

◼ Calculate fahrenheit as ((9/5) * Celsius) + 32

◼ Output fahrenheit

◼ Now we need to convert this to Python!

Python Programming, 4/e 15

Example Program:
Temperature Converter
#convert.py

A program to convert Celsius temps to Fahrenheit

by: Susan Computewell

def main():

 celsius = float(input("What is the Celsius temperature? "))

 fahrenheit = (9/5) * celsius + 32

 print("The temperature is ",fahrenheit," degrees Fahrenheit.")

main()

Python Programming, 4/e 16

Example Program:
Temperature Converter

◼ Once we write a program, we should
test it!

>>>

What is the Celsius temperature? 0

The temperature is 32.0 degrees Fahrenheit.

>>> main()

What is the Celsius temperature? 100

The temperature is 212.0 degrees Fahrenheit.

>>> main()

What is the Celsius temperature? -40

The temperature is -40.0 degrees Fahrenheit.

>>>

Python Programming, 4/e (Modified by KT) 17

Elements of Programs

◼ Names
◼ Names are given to variables (celsius,

fahrenheit), functions (main), etc.

◼ These names are called identifiers
◼ Every identifier must begin with a letter or

underscore (“_”), followed by any

sequence of letters, digits, or underscores.

◼ Identifiers are case sensitive.

Python Programming, 4/e 18

Elements of Programs

◼ These are all different, valid names
◼ X
◼ Celsius
◼ Spam

◼ spam
◼ spAm

◼ Spam_and_Eggs
◼ Spam_And_Eggs

Python Programming, 4/e 19

Elements of Programs

◼ Some identifiers are part of Python itself.

These identifiers are known as reserved
words (or keywords). This means they are

not available for you to use as a name for
a variable, etc. in your program.

◼ and, del, for, is, raise, assert, elif, in,

print, etc.

◼ For a complete list, see Table 2.1 (p. 36)

Python Programming, 4/e 20

Elements of Programs

◼ Expressions
◼ The fragments of code that produce or

calculate new data values are called

expressions.
◼ Literals are used to represent a specific

value, e.g. 3.9, 1, 1.0
◼ Simple identifiers can also be expressions.

◼ Also included are strings (textual data) and

string literals (like "Hello").

Python Programming, 4/e 21

Elements of Programs
>>> x = 5

>>> x

5

>>> print(x)

5

>>> print(spam)

Traceback (most recent call last):

 File "<pyshell#15>", line 1, in -toplevel-

 print spam

NameError: name 'spam' is not defined

>>>

◼ NameError is the error when you try to use a

variable without a value assigned to it.

Python Programming, 4/e (Modified by KT) 22

Elements of Programs

◼ Simpler expressions can be combined using

operators.
◼ +, -, *, /, **

◼ Spaces are irrelevant within an
expression.

◼ The normal mathematical precedence

applies.
◼ ((x1 – x2) / 2*n) + (spam / k**3)

◼ Nevertheless, use parentheses to avoid
ambiguity.

Python Programming, 4/e 23

Elements of Programs

◼ Output Statements
◼ print()

◼ print(<expr>, <expr>, …, <expr>)

◼ A print statement can print any number of

expressions.

◼ Successive print statements will display on
separate lines.

◼ A bare print will print a blank line.
◼ print(<expr>, end = " ")

Python Programming, 4/e 24

Elements of Programs

print(3+4)

print(3, 4, 3+4)

print()

print(3, 4, end=" "),

print(3 + 4)

print("The answer is", 3+4)

7

3 4 7

3 4 7

The answer is 7

Python Programming, 4/e 25

Assignment Statements

◼ Simple Assignment
◼ <variable> = <expr>

◼ variable is an identifier, expr is an
expression

◼ The expression on the RHS is
evaluated to produce a value which is
then associated with the variable
named on the LHS.

Python Programming, 4/e 26

Assignment Statements

◼ x = 3.9 * x * (1-x)

◼ fahrenheit = 9/5 * celsius + 32

◼ x = 5

Python Programming, 4/e 27

Assignment Statements

◼ Variables can be reassigned as many
times as you want!

>>> myVar = 0

>>> myVar

0

>>> myVar = 7

>>> myVar

7

>>> myVar = myVar + 1

>>> myVar

8

>>>

Python Programming, 4/e 28

Assignment Statements

◼ Variables are like a box we can put
values in.

◼ When a variable changes, the old value
is erased, and a new one is written in.

Python Programming, 4/e 29

Assignment Statements

◼ Technically, this model of assignment is
simplistic for Python.

◼ Python doesn't overwrite these memory
locations (boxes).

◼ Assigning a variable is more like putting
a “sticky note” on a value and saying,
“this is x”.

Python Programming, 4/e 30

Assigning Input

◼ The purpose of an input statement is to get
input from the user and store it into a
variable.

◼ <variable> =input(<prompt>)

◼ Here, prompt is a string expression used to

prompt the user for input.

Python Programming, 4/e 31

Assigning Input

◼ First the prompt is printed
◼ The input part waits for the user to enter a

value and press <enter>
◼ The expression that was entered is a string of

characters.
◼ The value is assigned to the variable.
◼ For string input:
<var> = input(<prompt>)

Python Programming, 4/e 32

Assigning Input

▪When you want a number from the user,

include either int or float around the input to

convert the digits into either a whole value

(integer) or fractional value (float).

Python Programming, 4/e (Modified by KT) 33

Simultaneous Assignment

◼ Several values can be calculated at the
same time

◼ <var1>, <var2>, … = <expr1>, <expr2>, …

◼ Evaluate the expressions in the RHS and
assign them to the variables on the LHS

◼ sum, diff = x+y, x-y

◼ While simultaneous assignment is a useful

technique, it should only be used in special
circumstances.

Python Programming, 4/e 34

Simultaneous Assignment

◼ How could you use this to swap the
values for x and y?
◼ Why doesn’t this work?
x = y

y = x

◼ We could use a temporary variable…

Python Programming, 4/e 35

Simultaneous Assignment

◼ We can swap the values of two
variables quite easily in Python!
◼ x, y = y, x

>>> x = 3

>>> y = 4

>>> print(x, y)

3 4

>>> x, y = y, x

>>> print(x, y)

4 3

Python Programming, 4/e 36

Definite Loops

◼ A definite loop executes a definite
number of times, i.e., at the time
Python starts the loop it knows exactly
how many iterations to do.

◼ for <var> in <sequence>:

 <body>

◼ The beginning and end of the body are
indicated by indentation.

◼ This is the counted loop pattern.

Python Programming, 4/e 37

Definite Loops

for <var> in <sequence>:

 <body>

◼ The variable after the for is called the
loop index. It takes on each successive
value in sequence.

◼ Often, the sequence portion consists of
a list of values.
◼ A list is a sequence of expressions in

square brackets.

Python Programming, 4/e 38

Definite Loops
>>> for i in [0,1,2,3]:

 print (i)

0

1

2

3

>>> for odd in [1, 3, 5, 7]:

 print(odd*odd)

1

9

25

49

>>>

Python Programming, 4/e 39

Definite Loops

◼ In chaos.py, what did range(10) do?
◼ >>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

◼ range is a built-in Python function that

generates a sequence of numbers,
starting with 0.

◼ list is a built-in Python function that

turns the sequence into an explicit list
◼ The body of the loop executes 10 times.

Python Programming, 4/e 40

Definite Loops

◼ The name of the index variable doesn’t
matter much.
◼ Programmers often use i or j.

◼ If you don’t reference the index
variable inside your loop, you can
leave it anonymous.

◼ for _ in range(3):

 print("Howdy!")

Definite Loops

◼ for loops alter the

flow of control, so

they are referred to

as control
structures.

Python Programming, 4/e 41

Python Programming, 4/e 42

Example Program: Future
Value

◼ Analysis
◼ Money deposited in a bank account earns

interest.

◼ How much will the account be worth 10

years from now?

◼ Inputs: principal, interest rate
◼ Output: value of the investment in 10 years

Python Programming, 4/e 43

Example Program: Future
Value

◼ Specification
◼ User enters the initial amount to invest, the

principal

◼ User enters an annual percentage rate, the

interest

◼ The specifications can be represented like
this …

Python Programming, 4/e 44

Example Program: Future
Value

◼ Program Future Value
◼ Inputs
◼ principal The amount of money being

invested, in dollars
◼ apr The annual percentage rate

expressed as a decimal number.
◼ Output The value of the investment 10 years

in the future
◼ Relatonship Value after one year is given by

principal * (1 + apr). This needs to be done
10 times.

Python Programming, 4/e 45

Example Program: Future
Value

◼ Design

Print an introduction

Input the amount of the principal (principal)

Input the annual percentage rate (apr)
Repeat 10 times:

 principal = principal * (1 + apr)

Output the value of principal

Python Programming, 4/e 46

Example Program: Future
Value

◼ Implementation
◼ Each line translates to one line of Python (in this

case)

◼ Print an introduction
◼ print ("This program calculates the future")

◼ print ("value of a 10-year investment.")

◼ Input the amount of the principal
◼ principal = eval(input("Enter the initial

principal: "))

Python Programming, 4/e 47

Example Program: Future
Value

◼ Input the annual percentage rate
◼ apr = eval(input("Enter the annual interest

rate: "))

◼ Repeat 10 times:
◼ for i in range(10):

◼ Calculate principal = principal * (1 + apr)
◼ principal = principal * (1 + apr)

◼ Output the value of the principal at the end

of 10 years
◼ print ("The value in 10 years is:", principal)

Python Programming, 4/e 48

Example Program: Future
Value

futval.py

A program to compute the value of an investment

carried 10 years into the future

def main():

 print("This program calculates the future value of a 10-year investment.")

 principal = float(input("Enter the initial principal: "))

 apr = float(input("Enter the annual interest rate: "))

 for _ in range(10):

 principal = principal * (1 + apr)

 print ("The value in 10 years is:", principal)

main()

Python Programming, 4/e 49

Example Program: Future
Value

>>> main()

This program calculates the future value of a 10-year investment.

Enter the initial principal: 100

Enter the annual interest rate: .03

The value in 10 years is: 134.391637934

>>> main()

This program calculates the future value of a 10-year investment.

Enter the initial principal: 100

Enter the annual interest rate: .10

The value in 10 years is: 259.37424601

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

