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Python Programming:
An Introduction to
Computer Science

Chapter 2
Writing Simple Programs



Objectives

◼ To know the steps in an orderly 
software development process.

◼ To understand programs following the 
input, process, output (IPO) pattern 
and be able to modify them in simple 
ways.

◼ To understand the rules for forming 
valid Python identifiers and expressions.
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Objectives

◼ To be able to understand and write 
Python statements to output 
information to the screen, assign values 
to variables, get numeric information 
entered from the keyboard, and 
perform a counted loop
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The Software Development 
Process

◼ The process of creating a program is 
often broken down into stages 
according to the information that is 
produced in each phase.
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The Software Development 
Process

◼ Analyze the Problem
◼ Figure out exactly the problem to be 

solved. Try to understand it as much as 
possible.
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The Software Development 
Process

◼ Determine Specifications
◼ Describe exactly what your program will 

do.
◼ Don’t worry about how the program will 

work, but what it will do.
◼ Includes describing the inputs, outputs, 

and how they relate to one another.
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The Software Development 
Process

◼ Create a Design
◼ Formulate the overall structure of the 

program.

◼ This is where the how of the program gets 

worked out.

◼ Develop your own algorithm that meets the 
specifications.
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The Software Development 
Process

◼ Implement the Design
◼ Translate the design into a computer 

language.

◼ In this course we will use Python.
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The Software Development 
Process

◼ Test/Debug the Program
◼ Try out your program to see if it worked.

◼ If there are any errors (bugs), they need to 

be located and fixed. This process is called 

debugging.

◼ Your goal is to find errors, so try 
everything that might “break” your 

program!
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The Software Development 
Process

◼ Maintain the Program
◼ Continue developing the program in 

response to the needs of your users.

◼ In the real world, most programs are never 
completely finished – they evolve over 

time.
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Example Program: 
Temperature Converter

◼ Analysis – the temperature is given in 

Celsius, user wants it expressed in 
degrees Fahrenheit.

◼ Specification
◼ Input – temperature in Celsius

◼ Output – temperature in Fahrenheit

◼ Output = 9/5(input) + 32
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Example Program: 
Temperature Converter

◼ Design
◼ Input, Process, Output (IPO)

◼ Prompt the user for input (Celsius 

temperature)

◼ Process it to convert it to Fahrenheit using 

F = 9/5(C) + 32
◼ Output the result by displaying it on the 

screen
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Example Program: 
Temperature Converter

◼ Before we start coding, let’s write a 
rough draft of the program in 
pseudocode

◼ Pseudocode is precise English 
(imprecise Python) that describes what 
a program does, step by step.

◼ Using pseudocode, we can concentrate 
on the algorithm rather than the 
programming language.
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Example Program: 
Temperature Converter

◼ Pseudocode:
◼ Input the temperature in degrees Celsius (call 

it celsius)

◼ Calculate fahrenheit as ((9/5) * Celsius) + 32

◼ Output fahrenheit

◼ Now we need to convert this to Python!
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Example Program: 
Temperature Converter
#convert.py

# A program to convert Celsius temps to Fahrenheit

# by: Susan Computewell

def main():

    celsius = float(input("What is the Celsius temperature? "))

    fahrenheit = (9/5) * celsius + 32

    print("The temperature is ",fahrenheit," degrees Fahrenheit.")

main()
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Example Program: 
Temperature Converter

◼ Once we write a program, we should 
test it!

>>> 

What is the Celsius temperature? 0

The temperature is  32.0  degrees Fahrenheit.

>>> main()

What is the Celsius temperature? 100

The temperature is  212.0  degrees Fahrenheit.

>>> main()

What is the Celsius temperature? -40

The temperature is  -40.0  degrees Fahrenheit.

>>> 
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Elements of Programs

◼ Names
◼ Names are given to variables (celsius, 

fahrenheit), functions (main), etc.

◼ These names are called identifiers
◼ Every identifier must begin with a letter or 

underscore (“_”), followed by any 

sequence of letters, digits, or underscores.

◼ Identifiers are case sensitive.
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Elements of Programs

◼ These are all different, valid names
◼ X
◼ Celsius
◼ Spam

◼ spam
◼ spAm

◼ Spam_and_Eggs
◼ Spam_And_Eggs
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Elements of Programs

◼ Some identifiers are part of Python itself. 

These identifiers are known as reserved 
words (or keywords). This means they are 

not available for you to use as a name for 
a variable, etc. in your program.

◼ and, del, for, is, raise, assert, elif, in, 

print, etc.

◼ For a complete list, see Table 2.1 (p. 36)
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Elements of Programs

◼ Expressions
◼ The fragments of code that produce or 

calculate new data values are called 

expressions.
◼ Literals are used to represent a specific 

value, e.g. 3.9, 1, 1.0
◼ Simple identifiers can also be expressions.

◼ Also included are strings (textual data) and 

string literals (like "Hello").



Python Programming, 4/e 21

Elements of Programs
>>> x = 5

>>> x

5

>>> print(x)

5

>>> print(spam)

Traceback (most recent call last):

  File "<pyshell#15>", line 1, in -toplevel-

    print spam

NameError: name 'spam' is not defined

>>> 

◼ NameError is the error when you try to use a 

variable without a value assigned to it.
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Elements of Programs

◼ Simpler expressions can be combined using 

operators.
◼ +, -, *, /, **

◼ Spaces are irrelevant within an 
expression.

◼ The normal mathematical precedence 

applies.
◼ ((x1 – x2) / 2*n) + (spam / k**3)

◼ Nevertheless, use parentheses to avoid 
ambiguity.
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Elements of Programs

◼ Output Statements
◼ print()

◼ print(<expr>, <expr>, …, <expr>)

◼ A print statement can print any number of 

expressions.

◼ Successive print statements will display on 
separate lines.

◼ A bare print will print a blank line.
◼ print(<expr>, end = " ")
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Elements of Programs

print(3+4)

print(3, 4, 3+4)

print()

print(3, 4, end=" "),

print(3 + 4)

print("The answer is", 3+4)

7

3 4 7

3 4 7

The answer is 7
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Assignment Statements

◼ Simple Assignment
◼ <variable> = <expr>

◼ variable is an identifier, expr is an 
expression

◼ The expression on the RHS is 
evaluated to produce a value which is 
then associated with the variable 
named on the LHS.
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Assignment Statements

◼ x = 3.9 * x * (1-x)

◼ fahrenheit = 9/5 * celsius + 32

◼ x = 5



Python Programming, 4/e 27

Assignment Statements

◼ Variables can be reassigned as many 
times as you want!

>>> myVar = 0

>>> myVar

0

>>> myVar = 7

>>> myVar

7

>>> myVar = myVar + 1

>>> myVar

8

>>> 



Python Programming, 4/e 28

Assignment Statements

◼ Variables are like a box we can put 
values in.

◼ When a variable changes, the old value 
is erased, and a new one is written in. 
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Assignment Statements

◼ Technically, this model of assignment is 
simplistic for Python.

◼ Python doesn't overwrite these memory 
locations (boxes).

◼ Assigning a variable is more like putting 
a “sticky note” on a value and saying, 
“this is x”. 
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Assigning Input

◼ The purpose of an input statement is to get 
input from the user and store it into a 
variable.

◼ <variable> =input(<prompt>)

◼ Here, prompt is a string expression used to 

prompt the user for input.
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Assigning Input

◼ First the prompt is printed
◼ The input part waits for the user to enter a 

value and press <enter>
◼ The expression that was entered is a string of 

characters.
◼ The value is assigned to the variable.
◼ For string input:
<var> = input(<prompt>)
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Assigning Input

▪When you want a number from the user, 

include either int or float around the input to 

convert the digits into either a whole value 

(integer) or fractional value (float).
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Simultaneous Assignment

◼ Several values can be calculated at the 
same time

◼ <var1>, <var2>, … = <expr1>, <expr2>, …

◼ Evaluate the expressions in the RHS and 
assign them to the variables on the LHS

◼ sum, diff = x+y, x-y

◼ While simultaneous assignment is a useful 

technique, it should only be used in special 
circumstances.
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Simultaneous Assignment

◼ How could you use this to swap the 
values for x and y?
◼ Why doesn’t this work?
x = y

y = x

◼ We could use a temporary variable…
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Simultaneous Assignment

◼ We can swap the values of two 
variables quite easily in Python!
◼ x, y = y, x

>>> x = 3

>>> y = 4

>>> print(x, y)

3 4

>>> x, y = y, x

>>> print(x, y)

4 3
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Definite Loops

◼ A definite loop executes a definite 
number of times, i.e., at the time 
Python starts the loop it knows exactly 
how many iterations to do.

◼ for <var> in <sequence>:

 <body>

◼ The beginning and end of the body are 
indicated by indentation.

◼ This is the counted loop pattern.
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Definite Loops

for <var> in <sequence>:

   <body>

◼ The variable after the for is called the 
loop index. It takes on each successive 
value in sequence.

◼ Often, the sequence portion consists of 
a list of values.
◼ A list is a sequence of expressions in 

square brackets.
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Definite Loops
>>> for i in [0,1,2,3]:

     print (i)

0

1

2

3

>>> for odd in [1, 3, 5, 7]:

     print(odd*odd)

1

9

25

49

>>> 



Python Programming, 4/e 39

Definite Loops

◼ In chaos.py, what did range(10) do?
◼ >>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

◼ range is a built-in Python function that 

generates a sequence of numbers, 
starting with 0.

◼ list is a built-in Python function that 

turns the sequence into an explicit list
◼ The body of the loop executes 10 times.
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Definite Loops

◼ The name of the index variable doesn’t 
matter much.
◼ Programmers often use i or j.

◼ If you don’t reference the index 
variable inside your loop, you can 
leave it anonymous.

◼ for _ in range(3):

     print("Howdy!")



Definite Loops

◼ for loops alter the 

flow of control, so 

they are referred to 

as control 
structures.
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Example Program: Future 
Value

◼ Analysis
◼ Money deposited in a bank account earns 

interest.

◼ How much will the account be worth 10 

years from now?

◼ Inputs: principal, interest rate
◼ Output: value of the investment in 10 years
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Example Program: Future 
Value

◼ Specification
◼ User enters the initial amount to invest, the 

principal

◼ User enters an annual percentage rate, the 

interest

◼ The specifications can be represented like 
this …
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Example Program: Future 
Value

◼ Program Future Value
◼ Inputs
◼  principal The amount of money being 

invested, in dollars
◼  apr The annual percentage rate 

expressed as a decimal number.
◼ Output The value of the investment 10 years 

in the future
◼ Relatonship Value after one year is given by 

principal * (1 + apr). This needs to be done 
10 times.
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Example Program: Future 
Value

◼ Design

Print an introduction

Input the amount of the principal (principal)

Input the annual percentage rate (apr)
Repeat 10 times:

 principal = principal * (1 + apr)

Output the value of principal
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Example Program: Future 
Value

◼ Implementation
◼ Each line translates to one line of Python (in this 

case)

◼ Print an introduction
◼ print ("This program calculates the future")

◼ print ("value of a 10-year investment.")

◼ Input the amount of the principal
◼ principal = eval(input("Enter the initial 

principal: "))
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Example Program: Future 
Value

◼ Input the annual percentage rate
◼ apr = eval(input("Enter the annual interest 

rate: "))

◼ Repeat 10 times:
◼ for i in range(10):

◼ Calculate principal = principal * (1 + apr)
◼  principal = principal * (1 + apr)

◼ Output the value of the principal at the end 

of 10 years
◼ print ("The value in 10 years is:", principal)



Python Programming, 4/e 48

Example Program: Future 
Value

# futval.py

#    A program to compute the value of an investment

#    carried 10 years into the future

def main():

    print("This program calculates the future value of a 10-year investment.")

    principal = float(input("Enter the initial principal: "))

    apr = float(input("Enter the annual interest rate: "))

    for _ in range(10):

        principal = principal * (1 + apr)

    print ("The value in 10 years is:", principal)

main()
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Example Program: Future 
Value

>>> main()

This program calculates the future value of a 10-year investment.

Enter the initial principal: 100

Enter the annual interest rate: .03

The value in 10 years is: 134.391637934

>>> main()

This program calculates the future value of a 10-year investment.

Enter the initial principal: 100

Enter the annual interest rate: .10

The value in 10 years is: 259.37424601
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