
Page 1 of 8 

Zelle 4e Chapter 9 Coding Assignment 
 
General Instructions 
My expectations for your work on coding assignment exercises will grow as we progress 
through the course.  In addition to applying any new programming techniques that have 
been covered in the current chapter, I will be expecting you to follow all of the good 
programming practices that we have adopted in the preceding weeks.  Here is a quick 
summary of good practices that we have covered so far: 
 

• Include a Python Docstring that describes the intent of the program. 
• Place your highest-level code in a function named main. 
• Include a final line of code in the program that executes the main function. 
• Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor.  

For example, place two blank lines between the code making up a function and 
the code surrounding that function. 

• Choose names for your variables that are properly descriptive. 
• Define CONSTANT_VALUES and use them in place of magic numbers. 
• Always use f-strings for string interpolation and number formatting.  
• When processing items from Python lists and tuples, unpack the values into 

variables with meaningful variable names to avoid using indexed expressions in 
your code. 

• Remember that your program should behave reasonably when it is not given any 
input.  

• Model your solution after the code that I demonstrate in the tutorial videos. 
• Make sure that your test input/output matches the sample provided. 
• Remember to test your program thoroughly before submitting your work. 
• Make sure that your test input/output matches the sample provided. 
• All functions that are not main() should have descriptive, action-oriented names. 
• All functions should be of reasonable size.   
• All functions should have high cohesion, and low coupling. 
• Remember to test your program thoroughly before submitting your work. 
• Your code must pass all relevant test cases.  Make sure that it passes tests at the 

boundaries created by if, else, and elif conditions in your program (boundary 
value tests). 

• Use of the break statement is allowed. 
• Use of the continue statement is forbidden. 

 
 
  



Page 2 of 8 

Exercise 1 (Regular) 
Create a program named distribute_race_ribbons_with_dictionary.py.  It should 
modeled after the program that I demonstrated in the tutorial 
(lookup_region_name_with_dictionary.py).  Your program should be different in the 
following respects: 
 

1. Your program will prompt the user for the place number in which the runner 
finished, and it will respond with the name of the ribbon to be awarded. 

 
The following table indicates which ribbon the participant should receive based up the 
place number in which they finished. 
 

Place Ribbon 
1 Blue 
2 Red 
3 Orange 
4 Gold 
5 Green 
6 Purple 

>6 White 
 
 
If the user enters a place number that is less than 1, then the program should display an 
error message in place of a ribbon name. 
 
If the user enters a non-integer, then the program should display an error message. 
 
In any case, the program should continue re-prompting the user for input until the user 
enters the empty string (<Enter>). 
 
Your unit testing for this program should be manual unit testing. 
 
When running a test where the user provides no input, you should expect the following 
input/output on your console: 
 

Please enter place finished (1, 2, 3...):  
 
Thanks for playing. 
 

  



Page 3 of 8 

When running a test where the user provides bad integer input, you should expect the 
following input/output on your console: 
 

Please enter place finished (1, 2, 3...): hi mom 
An integer value greater than zero was expected. You entered hi 
mom 
Please enter place finished (1, 2, 3...): 7 
Ribbon Awarded: White 
 
Please enter place finished (1, 2, 3...):  
 
Thanks for playing. 

 
When running a test where a user provides an invalid place number, you should expect 
the following input/output on your console: 
 

Please enter place finished (1, 2, 3...): 0 
An integer value greater than zero was expected. You entered 0 
Please enter place finished (1, 2, 3...): 4 
Ribbon Awarded: Gold 
 
Please enter place finished (1, 2, 3...):  
 
Thanks for playing. 

 
When running a test with more typical input, you should expect the following 
input/output on your console: 
 

Please enter place finished (1, 2, 3...): 1 
Ribbon Awarded: Blue 
 
Please enter place finished (1, 2, 3...): 2 
Ribbon Awarded: Red 
 
Please enter place finished (1, 2, 3...): 3 
Ribbon Awarded: Orange 
 
Please enter place finished (1, 2, 3...): 4 
Ribbon Awarded: Gold 
 
Please enter place finished (1, 2, 3...): 5 
Ribbon Awarded: Green 
 
Please enter place finished (1, 2, 3...): 6 
Ribbon Awarded: Purple 
 
Please enter place finished (1, 2, 3...): 7 



Page 4 of 8 

Ribbon Awarded: White 
 
Please enter place finished (1, 2, 3...): 99 
Ribbon Awarded: White 
 
Please enter place finished (1, 2, 3...):  
 
Thanks for playing.  



Page 5 of 8 

Exercise 2 (Regular) 
From the starter files provided for this assignment, copy the program named 
search_for_forbidden_passwords.py.  The starter file contains code that will fabricate 
the set of passwords that you need in your program. 
 
Model your code after the program that I showed in the tutorial named 
search_for_special_zipcodes.py. 
 
Your program should be different in the following respects: 
 

1. It should be processing passwords rather than zipcodes. 
 

2. The set of forbidden passwords will be created by the function provided in the 
starter code named fabricate_a_set_of_forbidden_passwords(). 

 
Your unit testing for this program should be manual unit testing. 
 
When running a test where the user provides no input, you should expect the following 
input/output on your console: 
 

Search for forbidden passwords in a set... 
 
Please enter password (<Enter> to stop):  
 
Thanks for playing. 

 
When running a test with more typical input, you should expect the following 
input/output on your console: 
 

Search for forbidden passwords in a set... 
 
Please enter password (<Enter> to stop): superman 
superman is in the forbidden password set. 
 
Please enter password (<Enter> to stop): mustang 
mustang is in the forbidden password set. 
 
Please enter password (<Enter> to stop): &goodPassword98^ 
&goodPassword98^ is NOT in the forbidden password set. 
 
Please enter password (<Enter> to stop): querty 
querty is NOT in the forbidden password set. 
 
Please enter password (<Enter> to stop):  
 
Thanks for playing.  



Page 6 of 8 

Exercise 3 (Regular) 
From the starter files provided for this assignment, copy the program named 
create_population_density_reports.py.  .  The starter file contains code that will 
fabricate the set of Country data objects that you need in your program. 
 
Model your code after the program that I showed in the tutorial named 
create_state_area_reports.py. 
 
Your program should be different in the following respects: 
 

1. It should create reports about population density. 
 

2. It should use the provided Country class as the data holder class. 
 

3. The list of Country data objects will be created by the function provided in the 
starter code named fabricate_countries_list(). 

 
Your unit testing for this program should be manual unit testing. 

 
When running a test, you should expect the following output on your console: 
 
 
                         BY COUNTRY NAME                          
 
Country                  Population           Area        Density 
                                            (SQMI)        (/SQMI) 
India                 1,344,098,517      1,269,211          1,059 
Japan                   126,320,000        145,925            866 
Nigeria                 195,875,237        356,669            549 
Pakistan                203,841,217        310,403            657 
South Korea              51,635,256         38,691          1,335 
United Kingdom           66,040,229         93,788            704 
 
 
        BY DESCENDING POPULATION DENSITY PER SQUARE MILE          
 
Country                  Population           Area        Density 
                                            (SQMI)        (/SQMI) 
South Korea              51,635,256         38,691          1,335 
India                 1,344,098,517      1,269,211          1,059 
Japan                   126,320,000        145,925            866 
United Kingdom           66,040,229         93,788            704 
Pakistan                203,841,217        310,403            657 
Nigeria                 195,875,237        356,669            549  



Page 7 of 8 

Exercise 4 (Challenge) 
Create a program named create_population_density_reports_with_lambda.py.  This 
program should be modeled after your solution to Exercise 3 
(create_population_density_reports.py).  This program should be different in the 
following respects: 
 

1. Instead of using conventional Python functions to specify the sort keys, this 
program should use Python lambdas.   
See https://realpython.com/python-lambda/. 

 
Your unit testing for this program should be manual unit testing. 
 
The testing for this program should be the same as the program in Exercise 3.  Please 
refer to those instructions for expected output. 
 
 
 
 
 
 
 
  

https://realpython.com/python-lambda/


Page 8 of 8 

Tools  
Use PyCharm to create and test all Python programs.  
 
Submission Method 
Follow the process that I demonstrated in the tutorial video on submitting your work.  
This involves:  

• Locating the properly named directory associated with your project in the file 
system. 

• Compressing that directory into a single .ZIP file using a utility program. 
• Submitting the properly named zip file to the submission activity for this 

assignment. 
 
File and Directory Naming 
Please name your Python program files as instructed in each exercise.  Please use the 
following naming scheme for naming your PyCharm project: 
 
 surname_givenname_exercises_zelle_4e_chapter_09 
 
 
If this were my own project, I would name my PyCharm project as follows: 
 
 trainor_kevin_exercises_zelle_4e_chapter_09 
 
 
Use a zip utility to create one zip file that contain the PyCharm project directory. 
The zip file should be named according to the following scheme: 
 
 surname_givenname_exercises_zelle_4e_chapter_09.zip 
 
If this were my own project, I would name the zip file as follows: 
 
 trainor_kevin_exercises_zelle_4e_chapter_09.zip 
 
Due By 
Please submit this assignment by the date and time shown in the Weekly Schedule. 
 
Last Revised 
2025-10-03 
 


