Severance Chapter 14 Coding Assignment

General Instructions

My expectations for your work on coding assignment exercises will grow as we progress
through the course. In addition to applying any new programming techniques that have
been covered in the current chapter, | will be expecting you to follow all of the good
programming practices that we have adopted in the preceding weeks. Here is a quick
summary of good practices that we have covered so far:

e Include a Python Docstring that describes the intent of the program.

e Place your highest-level code in a function named main.

e Include a final line of code in the program that executes the main function.

e Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor.
For example, place two blank lines between the code making up a function and
the code surrounding that function.

e Choose names for your variables that are properly descriptive.

e Define CONSTANT_VALUES and use them in place of magic numbers.

e Always use f-strings for string interpolation and number formatting.

e When processing items from Python lists and tuples, unpack the values into
variables with meaningful variable names to avoid using indexed expressions in
your code.

e Close all files before the conclusion of the program.

e Remember that your program should behave reasonably when it is not given any
input. This might be the result of the user pressing enter at a console prompt.
Or, it might be the result of the user providing a an input file that is empty.

e Model your solution after the code that | demonstrate in the tutorial videos.

e Make sure that your test input/output matches the sample provided.

e Create a sub-directory named data within your PyCharm project to hold data
files.

e Remember to submit all data files with your PyCharm project — including the files
that were provided as starter files to this assignment.

e All functions that are not main() should have descriptive, action-oriented names.

e All functions should be of reasonable size.

e All functions should have high cohesion, and low coupling.

e Remember to test your program thoroughly before submitting your work.

e Your code must pass all relevant test cases. Make sure that it passes tests at the
boundaries created by if, else, and elif conditions in your program (boundary
value tests).

e Use of the break statement is allowed but not encouraged.

e Use of the continue statement is forbidden.

e Regular expression patterns should be expressed as Python raw strings

e Your finished code must be refactored to meet all good program design practices
covered in this course.

Page 1 of 25

e Custom Python classes should be created using Python Dataclasses and follow all
practices demonstrated in our course.

Page 2 of 25

Important Note: Do NOT use the Python numpy or pandas packages

It is possible that you are already aware of the Python numpy and pandas packages. In
this course, we do NOT cover either of these packages. Instead, we are exploring how
to create program solutions without them. So, please do NOT include numpy or pandas
in your solutions to these exercises. When grading this assignment, we will be making
point deductions for solutions that use either of these packages.

Page 3 of 25

Exercise 1 (Regular)

Create a program named my_land_mammals.py. It should be modeled after the
program that | demonstrated in Beyond the Textbook lecture for this chapter
(my_states.py). Your program should be different in the following respects:

1. Your program will implement the LandMammal class that holds data facts
regarding the world’s largest land mammals.

2. The LandMammal class should implement the following instance variables:
a. nhame (str)
b. minimum_mass_in_pounds (int)
c. maximum_mass_in_pounds (int)

3. You will also need to implement the following method:

a. calculate_range_of mass_in_pounds() returns the maximum value minus
the minimum value as an int.

4. Your unit testing for this exercise should be implemented using Pytest. Your unit
test module should be named test_ my_land_mammals.py.

When running the Pytest automated unit tests, the output should resemble the
following:

Test Results
test_my_land_mammals

test_land_mammal_constructor

test_calculate_range_of_mass_in_pounds

Page 4 of 25

Exercise 2 (Regular)

Create a program named create_land_mammal_mass_reports.py. It should be modeled
after the program that | demonstrated in the tutorial video
(create_state_area_reports.py). Your program should be different in the following
respects:

1. Your program will create a report of LandMammal data facts in two different
sort orders:

a. By land Mammal Name
b. By Descending Range of Mass in Pounds

2. You should test your program using manual unit testing. Your program should

give expected results when run with the following input files provided as starter
files:

a. empty_file.txt
b. land_mammals.txt

When running a test with the empty input file, you should expect the following
input/output on your console:

Please enter input file name: data/empty_file.txt

BY LAND MAMMAL NAME

Land Mammal Minimum Mass Maximum Mass Range of Mass
Name in Pounds in Pounds in Pounds

BY DESCENDING RANGE OF MASS IN POUNDS

Land Mammal Minimum Mass Maximum Mass Range of Mass
Name in Pounds in Pounds in Pounds

Page 5 of 25

When running a test with the populated input file, you should expect the following
input/output on your console:

Please enter input file name: data/land_mammals.txt

Land Mammal

Name

African elephant
American bison
Asian elephant
Black rhinoceros
Cape buffalo
Gaur

Giraffe
Hippopotamus
Water buffalo
White rhinoceros

BY DESCENDING RANGE OF MASS IN POUNDS

Land Mammal

Name

African elephant
Asian elephant
White rhinoceros
Hippopotamus
Giraffe

Black rhinoceros
Gaur

Water buffalo
American bison
Cape buffalo

BY LAND MAMMAL NAME

Minimum Mass
in Pounds
10,000
700

8,000
1,500
1,100
1,000
1,544
2,500

660

3,000

Minimum Mass
in Pounds
10,000
8,000
3,000
2,500
1,544
1,500
1,000

660

700

1,100

Maximum Mass
in Pounds
24,000
2,200
17,640
4,000
2,200
3,000
4,255
8,820
2,200
9,920

Maximum Mass
in Pounds
24,000
17,640
9,920
8,820
4,255
4,000
3,000
2,200
2,200
2,200

Range of Mass

in Pounds
14,000
1,500
9,640
2,500
1,100
2,000
2,711
6,320
1,540
6,920

Range of Mass

in Pounds
14,000
9,640
6,920
6,320
2,711
2,500
2,000
1,540
1,500
1,100

Page 6 of 25

Exercise 3 (Regular)

Begin by copying the my_vehicles.py module from the starter files. This is the same
module that | demonstrated during the tutorial video. As copied from the starter files, it
should include implementations of the following classes: Vehicle, Car, and Truck.

At the conclusion for this exercise, your my_vehicles.py should be changed in the
following respects:

1. In addition to the Car and Truck subclasses, my_vehicles.py will also implement
the Motorcycle subclass.

2. The Motorcycle subclass will provide the following distinguishing instance
variable:

a. displacement _in_ccs (int)

3. The Motorcycle subclass will provide an implementation for the following
method:

a. determine_annual_registration_fee() returns float.

If displacement_in_ccs is less than 1,000, then the annual fee is 75.00.
Otherwise, the annual fee is 150.00.

Page 7 of 25

The code that you create during this exercise should be tested using Pytest. Begin by
copying the test_my_vehicles.py modules from the starter files. This is the same test
module that | demonstrated during the tutorial video. As copied from the starter files, it
should include unit test cases for the following classes: Vehicle, Car, and Truck.

At the conclusion for this exercise, your test_ my_vehicles.py should be changed in the
following respects:

1. It should include Pytest unit test cases for the Motorcycle subclass.

When running the Pytest automated unit tests in test_my_vehicles.py, the output
should resemble the following:

Test Results
test_my_vehicles

test_vehicle_constructor
test_car_constructor
test_car_determine_annual_registration_fee_fuel_type_electric
test_car_determine_annual_registration_fee_fuel_type_hybrid
test_car_determine_annual_registration_fee_fuel_type_fossil
test_car_determine_annual_registration_fee_bad_fuel_type

test_truck_constructor

test_truck_determine_annual_registration_fee_below_breakpoint

test_truck_determine_annual_registration_fee_above_breakpoint
test_motorcycle_constructor
test_motorcycle_determine_annual_registration_fee_below_breakpoint

test_motorcycle_determine_annual_registration_fee_above_breakpoint

Page 8 of 25

Exercise 4 (Regular)

Begin by copying the create_vehicle_registration_invoices.py module from the starter
files. This is the same module that | demonstrated during the tutorial video. As copied
from the starter files, this program should support invoice creation for cars and trucks.

In this exercise, you will modify create_vehicle_registration_invoices.py to support the
following requirements:

1. In addition to creating registration invoices for cars and trucks, your program
should also create registration invoices motorcycles.

2. Your program should give expected results when run with the following input
files provided as starter files:

a. empty_file.txt
b. car_truck_motorcycle_and_snowmobile_records.txt

c. car_truck_and_motorcycle_records.txt

When running a test with the empty input file, you should expect the following
input/output on your console:

Please enter the input filename: data/empty_file.txt

0 invoices have been printed.

Page 9 of 25

When running a test with the file that contains unexpected vehicle types, you should
expect the following input/output on your console:

Please enter the input filename:
data/car_truck_motorcycle_and_snowmobile_records.txt
Traceback (most recent call last):

File
"/Users/trainorl/____my_python_course_projects/trainor_kevin_exercises_s
everance_chapter_14/create_vehicle_registration_invoices.py", line 200,
in <module>

main()

File
"/Users/trainorl/____my_python_course_projects/trainor_kevin_exercises_s
everance_chapter_14/create_vehicle_registration_invoices.py", line 19,
in main

vehicles = get_vehicles()
AV AV AV AV AV AYAYAYAYAYAYAYAYAY

File
"/Users/trainorl/____my_python_course_projects/trainor_kevin_exercises_s
everance_chapter_14/create_vehicle_registration_invoices.py", line 38,
in get_vehicles

raise ValueError(f'Car, Truck, or Motorcycle was expected. This line
starts with: {line[0:10]}"')
ValueError: Car, Truck, or Motorcycle was expected. This 1line starts
with: Snowmobile

Page 10 of 25

When running a test with the properly populated input file, you should expect the

following input/output on your console:

Please enter the input filename:
data/car_truck_and_motorcycle_records.txt

CAR REGISTRATION RENEWAL INVOICE

Bella Baker
100 West End Street
Champaign, IL 62609

Make: Tesla

Model: Model 3

Year: 2022

Color: Blue

Vehicle ID: CAR4489679911
Fuel Type: Electric

AMOUNT DUE: $ 100.00

CAR REGISTRATION RENEWAL INVOICE

John Howard

600 Pleasant Circle
Apt A

Champaign, IL 60577

Make: Toyota

Model: Camry

Year: 2021

Color: White

Vehicle ID: CAR1074521368
Fuel Type: Fossil

AMOUNT DUE: $ 300.00

CAR REGISTRATION RENEWAL INVOICE

Page 11 of 25

Faith Langdon
335 River Circle
Champaign, IL 61256

Make: Toyota

Model: Corolla

Year: 2021

Color: Red

Vehicle ID: CAR2927528306
Fuel Type: Fossil

AMOUNT DUE: $ 300.00

TRUCK REGISTRATION RENEWAL INVOICE

Joshua Lewis

801 River Court

Apt B

Champaign, IL 62030

Make: Nissan

Model: Titan XD
Year: 2021

Color: Black

Vehicle ID: TRK6602773660
Gross Weight: 11,000

AMOUNT DUE: $ 400.00

TRUCK REGISTRATION RENEWAL INVOICE

Sebastian Lewis
100 Potter Way
Champaign, IL 60143

Make: Ford

Model: Super Duty F-350
Year: 2021

Color: Grey

Vehicle ID: TRK3575913453
Gross Weight: 12,000

AMOUNT DUE: $ 400.00

Page 12 of 25

CAR REGISTRATION RENEWAL INVOICE

Carol Metcalfe

1000 Pleasant Court
Apt C

Champaign, IL 60883

Make: Nissan

Model: Altima

Year: 2021

Color: Grey

Vehicle ID: CAR8804836953
Fuel Type: Fossil

AMOUNT DUE: $ 300.00

TRUCK REGISTRATION RENEWAL INVOICE

Michael North

1000 Main Way

Apt C

Champaign, IL 62220

Make: Ford

Model: Super Duty F-350
Year: 2021

Color: White

Vehicle ID: TRK5168323404
Gross Weight: 12,000

AMOUNT DUE: $ 400.00

MOTORCYCLE REGISTRATION RENEWAL INVOICE

Dylan Paige

800 Center Blvd
Unit D

Champaign, IL 60214

Page 13 of 25

Make: BMW

Model: R1250 GS
Year: 2021

Color: White

Vehicle ID: MCY8266162579
Displacement (CCs): 1,254

AMOUNT DUE: $ 150.00

*%%x%% A Large Number of Invoices Have Been Omitted to Save Space **%x*x%

MOTORCYCLE REGISTRATION RENEWAL INVOICE

Dominic Mackay
750 Center Blvd
Waukegan, IL 62374

Make: Royal Enfield
Model: Meteor 350
Year: 2021

Color: Grey

Vehicle ID: MCY5807211506
Displacement (CCs): 349

AMOUNT DUE: $ 75.00

CAR REGISTRATION RENEWAL INVOICE

Tracey Peake
555 High Court
Waukegan, IL 61926

Make: Nissan

Model: Altima

Year: 2021

Color: White

Vehicle ID: CAR2412599457

Page 14 of 25

Fuel Type:

AMOUNT DUE: $ 300.00

Fossil

CAR REGISTRATION RENEWAL INVOICE

Wanda Underwood
702 Center Way
Waukegan, IL 61636

Make:
Model:
Year:
Color:
Vehicle ID:
Fuel Type:

AMOUNT DUE: $ 300.00

Honda

Civic

2022

White
CAR2407296694
Fossil

86 invoices have been printed.

Page 15 of 25

Exercise 5 (Challenge)
If you decide to submit this challenge exercise, please be aware that this challenge
exercise has several parts. The overall objective of the exercise is to support the
snowmobile vehicle type. To implement support for snowmobiles, you will need to
make further changes to 3 modules:

1. my_vehicles.py

2. test_my_vehicles.py

3. create_vehicle_registration_invoices.py

Do not make new copies of these modules. Instead, modify the modules created in the
preceding exercises so that they also support snowmobiles.

Make changes to my_vehicles.py to support snowmobiles:

1. In addition to the Car, Truck, and Motorcycle subclasses, your program will also
implement the Snowmobile subclass.

2. The Snowmobile subclass will NOT provide a distinguishing instance variable.

3. The Snowmobile subclass will provide an implementation for the following
method:

a. determine_annual_registration_fee() returns float.

The annual fee is always 45.00.

Page 16 of 25

The code changes that you have made to my_vehicles.py should be tested using Pytest.
At the conclusion for this exercise, your test_my_vehicles.py should be changed in the

following respects:

1. It should include Pytest unit test cases for the Snowmobile subclass.

When running the Pytest automated unit tests in test_my_vehicles.py, the output

should resemble the following:

Test Results
test_my_vehicles

test_vehicle_constructor
test_car_constructor
test_car_determine_annual_registration_fee_fuel_type_electric
test_car_determine_annual_registration_fee_fuel_type_hybrid
test_car_determine_annual_registration_fee_fuel_type_fossil
test_car_determine_annual_registration_fee_bad_fuel_type
test_truck_constructor
test_truck_determine_annual_registration_fee_below_breakpoint
test_truck_determine_annual_registration_fee_above_breakpoint
test_motorcycle_constructor
test_motorcycle_determine_annual_registration_fee_below_breakpoint
test_motorcycle_determine_annual_registration_fee_above_breakpoint

test_snowmobile_constructor

test_snowmobile_determine_annual_registration_fee

Page 17 of 25

Now that the class hierarchy has been expanded to accommodate the snowmobile
subtype, your need to modify the create_vehicle_registration_invoices.py module to
support printing of invoices for snowmobiles. When those changes are complete,
proceed to manual unit testing of create_vehicle_registration_invoices.py.

When running a test with the empty input file, you should expect the following
input/output on your console:

Please enter the input filename: data/empty_file.txt

0 invoices have been printed.

When running a test with input that includes unexpected subtypes, you should expect
the following input/output on your console:

Please enter the input filename:
data/car_truck_motorcycle_snowmobile_and_arvee_records.txt
Traceback (most recent call last):

File
"/Users/trainorl/____my_python_course_projects/trainor_kevin_exercises_s
everance_chapter_14/create_vehicle_registration_invoices.py", line 226,
in <module>

main()

File
"/Users/trainorl/____my_python_course_projects/trainor_kevin_exercises_s
everance_chapter_14/create_vehicle_registration_invoices.py", line 19,
in main

vehicles = get_vehicles()
AV AV AV AV AV AYAYAYAYAYAYAYAYAY

File
"/Users/trainorl/____my_python_course_projects/trainor_kevin_exercises_s
everance_chapter_14/create_vehicle_registration_invoices.py", line 40,
in get_vehicles

raise ValueError(f'Car, Truck, Motorcycle, or Snowmobile was
expected. This 1line starts with: {line[0:10]1}')
ValueError: Car, Truck, Motorcycle, or Snowmobile was expected. This
line starts with: Arvee,Wall

Page 18 of 25

When running a test with the properly populated input file, you should expect the
following input/output on your console:

Please enter the input filename:
data/car_truck_motorcycle_and_snowmobile_records.txt

CAR REGISTRATION RENEWAL INVOICE

Bella Baker
100 West End Street
Champaign, IL 62609

Make: Tesla

Model: Model 3

Year: 2022

Color: Blue

Vehicle ID: CAR4489679911
Fuel Type: Electric

AMOUNT DUE: $ 100.00

CAR REGISTRATION RENEWAL INVOICE

John Howard

600 Pleasant Circle
Apt A

Champaign, IL 60577

Make: Toyota

Model: Camry

Year: 2021

Color: White

Vehicle ID: CAR1074521368
Fuel Type: Fossil

AMOUNT DUE: $ 300.00

SNOWMOBILE REGISTRATION RENEWAL INVOICE

Page 19 of 25

Colin King

800 Brook Circle
Unit C

Champaign, IL 61461

Make: Yamaha

Model: Sidewinder L-TX GT
Year: 2022

Color: White

Vehicle ID: SNW2387865728

AMOUNT DUE: $ 45.00

CAR REGISTRATION RENEWAL INVOICE

Faith Langdon
335 River Circle
Champaign, IL 61256

Make: Toyota

Model: Corolla

Year: 2021

Color: Red

Vehicle ID: CAR2927528306
Fuel Type: Fossil

AMOUNT DUE: $ 300.00

TRUCK REGISTRATION RENEWAL INVOICE

Joshua Lewis

801 River Court

Apt B

Champaign, IL 62030

Make: Nissan

Model: Titan XD
Year: 2021

Color: Black

Vehicle ID: TRK6602773660
Gross Weight: 11,000

AMOUNT DUE: $ 400.00

Page 20 of 25

TRUCK REGISTRATION RENEWAL INVOICE

Sebastian Lewis
100 Potter Way
Champaign, IL 60143

Make:

Model:

Year:

Color:
Vehicle ID:
Gross Weight:

AMOUNT DUE: $ 400.00

SNOWMOBILE REGISTRATION

Boris Marshall

103 High Circle

Apt A

Champaign, IL 60700

Make:
Model:
Year:
Color:
Vehicle ID:

AMOUNT DUE: $ 45.00

Ford

Super Duty F-350
2021

Grey
TRK3575913453
12,000

RENEWAL INVOICE

Ski-Doo

Summit Edge 850 E-TEC 165
2022

Grey

SNW6504064609

*%%x%% A Large Number of Invoices Have Been Omitted to Save Space **%x*x%

Page 21 of 25

MOTORCYCLE REGISTRATION RENEWAL INVOICE

Oliver Cameron

555 Pleasant Circle
Waukegan, IL 61303

Make:
Model:
Year:
Color:
Vehicle ID:

Displacement (CCs):

AMOUNT DUE: $ 75.00

MOTORCYCLE REGISTRATION

Dominic Mackay
750 Center Blvd

Waukegan, IL 62374

Make:
Model:
Year:
Color:
Vehicle ID:

Displacement (CCs):

AMOUNT DUE: $ 75.00

SNOWMOBILE REGISTRATION

John May
888 Main Blvd

Waukegan, IL 61261

Make:
Model:
Year:
Color:
Vehicle ID:

AMOUNT DUE: $ 45.00

Triumph
Trident 660
2021

Red
MCY1042465955
660

RENEWAL INVOICE

Royal Enfield
Meteor 350
2021

Grey
MCY5807211506
349

RENEWAL INVOICE

Arctic Cat

ZR 9000 Thundercat

2021
Blue
SNW9112403883

Page 22 of 25

SNOWMOBILE REGISTRATION RENEWAL INVOICE

Richard Metcalfe
611 West End Street
Apt B

Waukegan, IL 60838

Make: Polaris

Model: Pro RMK Matryx Slash Patriot Boost 163
Year: 2021

Color: Black

Vehicle ID: SNW5667579989

AMOUNT DUE: $ 45.00

CAR REGISTRATION RENEWAL INVOICE

Tracey Peake
555 High Court
Waukegan, IL 61926

Make: Nissan

Model: Altima

Year: 2021

Color: White

Vehicle ID: CAR2412599457
Fuel Type: Fossil

AMOUNT DUE: $ 300.00

CAR REGISTRATION RENEWAL INVOICE

Wanda Underwood
702 Center Way
Waukegan, IL 61636

Make: Honda
Model: Civic
Year: 2022

Page 23 of 25

Color: White
Vehicle ID: CAR2407296694
Fuel Type: Fossil

AMOUNT DUE: $ 300.00

100 invoices have been printed.

Page 24 of 25

Tools
Use PyCharm to create and test all Python programs.

Submission Method

Follow the process that | demonstrated in the tutorial video on submitting your work.
This involves:

e Locating the properly named directory associated with your project in the file
system.
e Compressing that directory into a single .ZIP file using a utility program.
e Submitting the properly named zip file to the submission activity for this
assignment.
File and Directory Naming

Please name your Python program files as instructed in each exercise. Please use the
following naming scheme for naming your PyCharm project:

surname_givenname_exercises_severance_chapter_14

If this were my own project, | would name my PyCharm project as follows:

trainor_kevin_exercises_severance_chapter_14

Use a zip utility to create one zip file that contain the PyCharm project directory.
The zip file should be named according to the following scheme:

surname_givenname_exercises_severance_chapter_14.zip
If this were my own project, | would name the zip file as follows:
trainor_kevin_exercises_severance_chapter_14.zip

Due By
Please submit this assignment by the date and time shown in the Weekly Schedule.

Page 25 of 25

