
Amazon Elastic Compute Cloud (EC2) vs. in-House
HPC Platform: a Cost Analysis

Joseph Emeras∗, Sébastien Varrette† and Pascal Bouvry†
∗Interdisciplinary Centre for Security Reliability and Trust

†Computer Science and Communications (CSC) Research Unit

6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg

Firstname.Name@uni.lu

Abstract—Since its advent in the middle of the 2000’s, the
Cloud Computing (CC) paradigm is increasingly advertised as
THE solution to most IT problems. While High Performance
Computing (HPC) centers continuously evolve to provide more
computing power to their users, several voices (most probably
commercial ones) emit the wish that CC platforms could also
serve HPC needs and eventually replace in-house HPC platforms.
If we exclude the pure performance point of view where many
previous studies highlight a non-negligible overhead induced by
the virtualization layer at the heart of every Cloud middleware
when submitted to an High Performance Computing (HPC)
workload, the question of the real cost-effectiveness is often left
aside with the intuition that, most probably, the instances offered
by the Cloud providers are competitive from a cost point of view.
In this article, we wanted to assert (or infirm) this intuition
by evaluating the Total Cost of Ownership (TCO) of the in-
house HPC facility we operate since 2007 within the University
of Luxembourg (UL), and compare it with the investment that
would have been required to run the same platform (and the same
workload) over a competitive Cloud IaaS offer. Our approach to
address this price comparison is two-fold. First we propose a
theoretical price - performance model based on the study of the
actual Cloud instances proposed by one of the major Cloud IaaS
actors: Amazon Elastic Compute Cloud (EC2). Then, based on
our own cluster TCO and taking into account all the Operating
Expense (OPEX), we propose a hourly price comparison between
our in-house cluster and the equivalent EC2 instances. The results
obtained advocate in general for the acquisition of an in-house
HPC facility, which balance the common intuition in favor of
Cloud Computing (CC) platforms, would they be provided by
the reference Cloud provider worldwide.

I. INTRODUCTION

Many public or private organizations have departments
and workgroups that could benefit from High Performance
Computing (HPC) resources to analyze, model, and visualize
the growing volumes of data they need to conduct business.
From a general perspective, HPC is essential for increased
competitiveness and stronger innovation. There are two real-
istic scenarios today to access High Performance Computing
(HPC) capacities beyond what is available from the desktop
systems. One option is to acquire and operate an HPC system.
However, for many companies and especially SMEs, this is
seen as a non-viable solution since the Total Cost of Ownership
(TCO) is perceived as too high, and additional skills and man-
power are needed to operate and maintain such a system. With
the rapidly growing enthusiasm around the Cloud Computing
(CC) paradigm, and more particularly of the Infrastructure-as-
a-Service (IaaS) model which is best suited for HPC workload,

a second viable option is foreseen and attracts more and
more attention due to the massive advertisement toward the
cost-effectiveness of this approach. In this model, users rent
to providers a resource that may be computing, storage and
network or higher level services. At present, many large actors
of the Cloud Computing market propose an IaaS service to
their users. The cost model of IaaS is based on the actual
resource usage of the user, who is thus billed depending
on his activity. The computing resources are operated upon
virtual machines and ran on a multi-tenant mode on the
physical hardware. Characterized by their scalability and high-
availability, IaaS platforms tend to be more and more efficient
and are now sliding towards the territory of the traditional
HPC facilities. Because of these interesting characteristics,
many IaaS implementations have been largely studied and
benchmarked in the context of an HPC usage. While it is now
widely established that running an HPC workload on top of
IaaS resources induces a non-negligible performance overhead
due to the hypervisor at the heart of every Cloud middleware,
many people assume that this performance impact is counter-
balanced by the massive cost savings brought by the Cloud
approach. But is it true? Since 2007, we operate within the
University of Luxembourg (UL) a medium size HPC facil-
ity [1] (� 4300 cores, 50 TFlops and 4 PB of shared storage
over parallel and distributed File Systems as of Jan. 2015)
addressing the needs of academic researchers coming from
many different fields (physics, material sciences, economy,
life-science etc.). While developing our own expertise in the
management of such a platform, it also gave us the opportunity
to scrutinize on a daily basis and over a significant period of
time its associated operating costs.

In this context, we propose in this paper a TCO analysis for
our in-house HPC facility. Also, although the comparative per-
formance of Cloud vs. HPC systems received a wide audience
in the recent literature, the analogous analysis covering the
costs remains at an early stage, with very few contribution from
the academic community. This is also due to the constant and
rapid evolution of the Cloud instances offered by the different
providers and the frequent price changes, making it hard to
establish a fair comparison of the Cloud usage price with
regards the equivalent HPC infrastructure operational costs.
Furthermore the direct comparison of a given Cloud instance
price with an HPC operating cost is biased and should be taken
with precautions as it omits the performance aspect where
the Cloud instance performance does not match with the one
of an HPC node. It is to feed this gap that we propose in
this article a fair cost analysis. Our approach to address this

2016 IEEE 9th International Conference on Cloud Computing

2159-6190/16 $31.00 © 2016 IEEE

DOI 10.1109/CLOUD.2016.44

284

Authorized licensed use limited to: University of Illinois. Downloaded on May 22,2024 at 19:16:25 UTC from IEEE Xplore. Restrictions apply.

price comparison is twofold. First we propose a theoretical
price - performance model based on the study of the actual
Cloud instances proposed by one of the major Cloud IaaS
actors according to Gartner’s 2015 Quadrant: Amazon Elastic
Compute Cloud (EC2). Then, based on our own cluster TCO
and taking into account all the Operating Expense (OPEX)
we propose a hourly price comparison between our in-house
cluster and the EC2 instances.
This article is organized as follows: Section II reviews the
related work as regards the cost analysis of Cloud platforms
when compared to HPC facilities. Then, Section III summarize
the characteristics of our in-house UL HPC, with a focus on
the operating costs required for the TCO estimation. A first
contribution i.e. this TCO analysis for our platform (reported
in an average hourly node rate) is reported in this section.
The Amazon EC2 instances, especially the ones relevant for
HPC workloads and thus suited for a comparison with in-house
HPC facilities, are depicted in Section IV. Then we proposed a
novel insight over Amazon EC2 instance prices through a new
cost model that matches almost perfectly the corresponding
computing performance. This new approach and its theoretical
validation is depicted in Section V. Furthermore, we apply
this novel cost model to propose a fair comparison with
the TCO analysis performed over our in-house HPC facility
in Section VI. This permits to conclude on the opportunity
to privilege one or the other solution when considering the
acquisition (or the renting) of an HPC platform. Finally,
Section VII concludes the paper and provides some future
directions and perspectives opened by this study.

II. RELATED WORK

A. Cloud Performance Evaluation for HPC Applications

Evaluating the adequateness and the performance of cloud
platforms for HPC applications has been largely studied in
various ways. Many works addressed this problem using
either synthetic benchmarks, real applications or even both
to quantify the performance impact when running over an
hypervisor (such as Xen, KVM, VirtualBox or VMWare), a
Cloud middleware (such as OpenStack) or a commercial Cloud
IaaS [2], [3], [4], [5], [6], [7], [5], [8], [9], [10], [11], [12].
Depending on the experimental procedures, benchmarks and
input data chosen, the loss due to the cloud varies among
these experiments, but all agree that there exist a performance
drop at scale. This performance drop has been explained in
several works as due to poor networking capabilities of Clouds.
Other elements are impacting the performances. For instance in
[13], the performance evaluation of EC2 cc1.4xlarge instances
based on real world climate and cardiac simulation application
along with the NPB benchmark suite showed that not only
the interconnect is determining but also the underlying file
system, even on application that are classified as not strongly
I/O intensive. In this work it was also observed that jitter
due to virtualization has a minor effect on the applications
performance. However as proposed in [14], some applications
may still benefit from the cloud if their workload does not
involve latency bound or communication bound patterns. But
another important concern is the variability of performance
coming from the intrinsic property of the cloud being location
independent and multi-tenant [15]. This aspect could be tack-
led by software techniques such as the one described in [16],
where the authors proposed a dynamic load balancer to reduce

this variability for tightly-coupled iterative HPC applications
based upon Charm++ and to be ran on the Cloud.

B. HPC vs. Cloud Cost Analysis and Modeling

If it is currently established that Cloud platforms per-
formance does not fully match the requirements of HPC
applications as would do a pure HPC facility, the acclaimed
cost effectiveness of the CC paradigm might counter-balance
this performance overhead. Actually, several works already
attempted to describe or model the cost of using a public
cloud infrastructure instead of an HPC facility. In [17] the
EC2 cc2.8xlarge instance is used as reference with on-demand
pricing to compare the price and performance of the Cloud
versus five in-house clusters. To be able to do this comparison,
they propose a cost model for HPC cluster nodes. As the
authors could not get or distribute data describing the cost
of ownership, they propose an alternative model. Based upon
the execution times of four NPB Benchmarks on their EC2
reference instance and local clusters, the alternative model
proposes by the means of linear regression to attribute a node
hourly price to each of their clusters. This approach has the
advantage to be able to price cluster nodes, however it is now
outdated as EC2 offers several instances that would fit an
HPC workload and not only the sole cc2.8xlarge instance that
was available at this time. Thus this model should be updated
taking into consideration the instances evolution. Another lack
of this study is that only on-demand pricing has been study
although it may not be the most adequate pricing type when
the workload is considered on a long period (months). In that
case, the Cloud price considered is artificially too high due
to the pricing type, only adapted for short workloads. Thus
the reserved pricing types should also be taken into account
in the study. In [14], the authors propose a pricing model
based on the study of cost and prices collected from several
supercomputers installations and cloud offerings. The results
of this comparison was that the cost ratio between an on-
premise supercomputing and a cloud deployment is between 2
and 3 (meaning that one cluster core-hour cost is 2 to 3 times
more expensive than a cloud’s core-hour). Finally to better
fit what may happen in reality due to price fluctuations they
select a ratio between 1 to 5. Then, based on this model they
compare the cost of running three applications on the cloud
or on a cluster. According to this comparison, there is little
sensitivity in the choice of the ratio and it is straightforward
to determine the price break-even point. However, because
of how the price model is computed the authors warn that
this economic comparison should be taken conservatively. This
motivates our approach of using real cost data for operating
a local cluster. In [18] the authors analyzed the cost of the
Amazon EC2 cloud from different point of view: Memory size
or CPU performance. They propose rankings of the instances
based on their price regarding a given metric (i.e. memory size
and bandwidth or cpu performance). What was observable was
that instances were designed to be cost effective for one of
the metrics only. This observation motivates our approach to
include several instance types in the price model instead of a
single one. The work proposed in [19] approximates the cost
of the local cluster nodes based on the EC2 cc1 hourly price.
To compute this node hourly price, they scaled the cc1 price
in order to reflect the performance differences between their
cluster and the cloud instance. The authors warn that the price

285

Authorized licensed use limited to: University of Illinois. Downloaded on May 22,2024 at 19:16:25 UTC from IEEE Xplore. Restrictions apply.

286

Authorized licensed use limited to: University of Illinois. Downloaded on May 22,2024 at 19:16:25 UTC from IEEE Xplore. Restrictions apply.

Table II. CHAOS AND GAIA COMPUTING NODES CHARACTERISTICS AND ESTIMATED TCO EVALUATION PER COMPUTING NODE.

Node CPUs Memory GB GPUs Nb. Nodes CPU Family CPU Type CPU Clock Disk GB GFLOPS Hourly Cost ($)

C
H

A
O

S

d-cluster1 12 24 0 16 westmere L5640 2.26 250 108.48 0.386
e-cluster1 16 32 0 16 sandybridge E5-2660 2.20 250 281.60 0.380
h-cluster1 12 24 0 32 westmere L5640 2.26 250 108.48 0.375
r-cluster1 32 1024 0 1 nehalem X7560 2.26 250 289.28 1.760
s-cluster1 16 32 0 16 sandybridge E5-2660 2.20 250 281.60 0.380

G
A

IA

gaia-[1-60] 12 48 0 60 westmere L5640 2.26 256 108.48 0.400
gaia-[123-154] 12 48 0 32 westmere X5675 3.07 256 147.36 0.291
gaia-[61-62] 12 24 1792 2 westmere L5640 2.26 256 108.48 0.588
gaia-[63-72] 12 24 10240 10 westmere L5640 2.26 256 108.48 0.545
gaia-[75-79] 16 64 12480 5 sandybridge E5-2660 2.20 256 281.60 0.524
gaia-[83-122] 12 48 0 40 westmere X5670 2.93 256 140.64 0.291
gaia-73 160 1024 0 1 sandybridge E7-4850 2.00 256 2560.00 2.596
gaia-74 32 1024 0 1 sandybridge E5-4640 2.40 256 614.40 1.463

0

500

1000

1500

2000

20
12

−
01

20
12

−
07

20
13

−
01

20
13

−
07

20
14

−
01

20
14

−
07

C
or

es

effective
daily usage

cores
availability

Figure 2. Example of used vs. available computing resources within the
gaia cluster.

For instance, a typical usage of the gaia cluster resources
is illustrated in the figure 2. It permits to derive an accurate
ratio in terms of used resources with regards to the available
computing components. From this information, we are able to
estimate the TCO of our local HPC facility, more precisely
of the two clusters chaos and gaia. These clusters being
heterogeneous and composed of different node classes as
reported in Table II, we compute the hourly cost of a node
belonging to each node class. In all cases for the calculation
of the TCO, we take into account the amortized node purchase
price, network and server equipment price, room equipment,
manpower and energy (power and cooling) costs. Computing
nodes are considered amortized on a four year basis, network
equipment on eight years and server equipment on three years.
Server rooms on their side are supposed to be amortized in
15 years. Unfortunately the only thing we could not integrate
into the TCO is the building cost itself as the HPC center is
hosted within the UL which, as a research institutions, benefit
from governmental funding for its buildings. For obvious
privacy reasons, we cannot disclose the detailed buying price
of the machines. Yet the final amortized node hourly costs are
reported in the last column of the Table II. To facilitate the
comparison with Amazon EC2 instances prices, we reported
this TCO in US Dollar rather than in Euro.

IV. AMAZON EC2 INSTANCES FOR HPC

Since its launch in 2006 with the m1.small instance, Ama-
zon has largely expanded the variety of instances and features
it provides through its Elastic Compute Cloud (EC2) offer.
They are now proposed in several families, each corresponding
to a different computing need. Along the years and at new

instance type releases, Amazon decreased the prices of the
already existing ones. To ensure backward compatibility, most
older instances are still distributed, however they do not
provide a good price/performance ratio anymore regarding the
most recent ones. Table III presents all the available instance
types and their release dates as of early 2015 (except for the
cc1.4xlarge which is not available anymore). An instance type
e.g. m1 or c1 belongs to an instance family, e.g. General
Purpose or Compute Optimized. For each instance type, there
exist one or several models available that are not presented in
this table. Instance models are described by an extension of
the instance type (e.g. m1.small), possible values are: micro,
small, medium, large, xlarge, 2xlarge, 4xlarge, 8xlarge. A
given instance model corresponds to a particular performance
of the instance in terms of vCPU, Memory, Storage, Network
or such other performance characteristics.

Table III. EC2 INSTANCE TYPES – GROUPED BY FAMILY.

Instance Family Instance Type
Processor

Microarchitecture
Introduction Date

General
Purpose

m1 Xeon Family 2006-08-23
m3 Ivy Bridge-EP 2012-10-31
t2 Xeon Family 2014-07-01

m4 Haswell-EP 2015-06-11

Memory
Optimized

m2 Xeon Family 2010-02-22
cr1 Sandy Bridge-EP 2013-01-21
r3 Ivy Bridge-EP 2014-04-10

Compute
Optimized

c1 Xeon Family 2008-08-08
cc1 Nehalem-EP 2010-07-13
cc2 Sandy Bridge-EP 2011-11-14
c3 Ivy Bridge-EP 2013-11-14
c4 Haswell-EP 2014-11-13

Storage
Optimized

hi1 Xeon Family 2012-07-18
hs1 Sandy Bridge-EP 2012-12-21
i2 Ivy Bridge-EP 2013-12-20

Dense Storage d2 Haswell-EP 2015-03-30

GPU
cg1 Nehalem-EP 2010-11-14
g2 Sandy Bridge-EP 2013-11-05

Micro t1 Xeon Family 2009-10-26

To summarize, the cloud characteristics (which are also
valid for EC2) that may impact HPC applications are the
following: (1) clouds are run in virtualized environments.
Although the virtualization overhead is not so important for
CPU bound applications, the virtualized networking is still an
important drawback for applications that need communications
(i.e a large part of HPC applications). Even though the net-
working uses virtualization improvements such as Single Root
I/O Virtualization (SR-IOV), there exists a performance drop
for inter-node communications. (2) there is generally no high
performance network such as Infiniband yet available. This
is still a problem for many applications whose performance
is highly linked with the network performance. (3) cloud by
default uses multi-tenancy. This is a real problem as it does

287

Authorized licensed use limited to: University of Illinois. Downloaded on May 22,2024 at 19:16:25 UTC from IEEE Xplore. Restrictions apply.

not ensure a reliable and stable behavior for applications.
In particular, I/O operations in multi-tenancy platforms can
face high I/O jitter. However EC2 also provides a charged
Dedicated Instances service to ensure the user will have the
exclusive access to the nodes reserved. (4) spatial and link
proximity of the reserved Virtual Machines (VMs) is not
guaranteed by default. Because of this intrinsic characteristic,
inter-node bandwidth and latency can vary a lot. As for multi-
tenancy, EC2 also provides for some instances the placement
group feature, a logical grouping of instances within the same
Availability Zone (isolated location within the same region)
ensuring a low-latency, 10 Gb network between the nodes.

If we now aim at the execution of an HPC workload,
one of the key constraint to address is the need of a reliable
and efficient underlying network. Not all EC2 instances offer
such a guarantee, however there exists a mechanism called
placement group available for some of them and that allows
the user to group a set of instances in the same cluster. This is
an important requirement for HPC applications that use several
nodes. Here we consider that most classical HPC applications
fall into that category and thus need to be placed within the
same cluster. In the Table IV, we detail the EC2 instances that
allow placement groups and thus may be suitable for such
an HPC workload. It is also important to say on an HPC
point of view that the nodes that host the EC2 instances have
HyperThreading activated, thus each vCPU on an instance is
actually a HyperThread. In all cases, Amazon’s EC2 provides
several mechanisms to target High Performance on its cloud
instances. (1) Enhanced Networking with SR-IOV. This hard-
ware feature, proposed on the most efficient instances, provides
higher network performance for the VMs: higher bandwidth
and lower network latency and jitter. The instances were this
feature is available are c3, c4, r3, i2 and d2. Unfortunately
GPU instances do not provide the Enhanced Networking
feature but we have to consider them anyway for an HPC
environment. (2) Placement Groups (or cluster networking).
This feature provides high bandwidth performance with a full
bisection Ethernet network. (3) Dedicated Instances. By default
on EC2, cloud instances are multi-tenant VMs hosted on the
same physical node. By opting for the dedicated instance
option (paying) at launch time, the instance will have exclusive
access to the underlying physical machine. (4) EBS-Optimized.
Elastic Bloc Store (EBS) is Amazon’s persistent storage for
EC2 instances (as opposed to instances local storage which is
destroyed after the instance termination). It can be purchased
with a provisioned IO option to increase and guarantee data
transfer rates. EBS volumes have a maximum throughput of
128 MiB/s that can be attained only with instances proposing
the EBS-optimized option. One of the last instance type
released by Amazon at this time, the c4 instance (end of 2014),
proposes EBS storage with no additional costs but does not
provide local storage.

V. A NOVEL PRICE MODEL BINDING EC2 INSTANCES

WITH THEIR HPC PERFORMANCE

EC2 instance performances are provided in EC2 Compute
Units (ECUs). This metric represents the relative measure of
the integer processing power of a given instance. Amazon
does not give precisely how they measure ECUs, the only
information available is that one ECU is equivalent to one Intel
Xeon core running at 1.0-1.2 GHz. It is also clearly stated by

Amazon that this metric might be revised in the future by
adding or substituting measures that go into the definition of
an ECU. According to Amazon, the goal of providing instance
performance as ECU is to make it easier to compare CPU
capacity between different instance types and thus to "provide
a consistent amount of CPU capacity no matter what the
actual underlying hardware". Although the claim of using
several benchmarks and tests to manage the consistency and
predictability of the performance from an EC2 Compute Unit,
it seems that this information might be sometimes misleading.
In [21], the authors showed that for several instance types the
performance measured experimentally was unreliable, unpre-
dictable and not reflecting the ECU provided by EC2. This
was due to the fact that the instances that were tested in this
study were running indifferently on several types of Central
Process Units (CPUs) and it seems that for instances whose
CPU model is described as being a Xeon Family, there is no
guarantee of the actual CPU model on which the instance will
be ran. In another study driven by Iosup et al. in [8], the authors
experimentally compared the actual GFLOPS regarding the
announced ECUs for m1 and c1 instances and observed a real
performance comprised between 39 to 44% of the advertised
performance for m1 instances and most of c1 instances with
an exception of 58.6% for the c1.xlarge instance.
As ECU is a non standard way to measure a processor perfor-
mance and it actually makes it difficult to fairly compare the
computing performance of an EC2 instance with an HPC node.
Moreover, as this metric is not provided with a strict definition
and as it was observed performance mismatch between the
announced ECU and actual performance we need another met-
ric such as FLOPS which is the traditionally used theoretical
processor computing performance metric. As according to its
definition, an ECU is equal to one Xeon core at 1.0-1.2 GHz,
the ECU should reflect the processor FLOPS value.

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�
�

�

��

���

���

� ��� ���� ����
����	

�
�

�

��������
����

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

���

���

���

��

��

 !�

 "�

!�

#�

#�

��

Figure 3. ECUs vs. theoretical peak performance GFLOPS.

In Figure 3, we compare the instances ECU provided
by Amazon regarding the theoretical GFLOPS peak from
the corresponding instance processor. In this figure we take
into account only the instances where the CPU model is
precisely defined. We can observe that there is indeed a linear
relationship between GFLOPS and ECUs. The linear model
describing this gives an adjusted R2 value of 0.9 and a p-value
of 2.2e− 16. However, we also observe that while ECU has a

288

Authorized licensed use limited to: University of Illinois. Downloaded on May 22,2024 at 19:16:25 UTC from IEEE Xplore. Restrictions apply.

Table IV. EC2 INSTANCES SUITABLE FOR HPC WORKLOAD AND THEIR KEY CHARACTERISTICS.

Family Type ECUs GFLOPS vCPUs Processor Clock Memory Storage GPUs EBS-Opt Network SR-IOV

Compute optimized c3.2xlarge 28.0 179.2 8 Xeon E5-2680v2 2.8 15.00 2 x 80 (SSD) 0 TRUE 1 Gib TRUE
Compute optimized c3.4xlarge 55.0 358.4 16 Xeon E5-2680v2 2.8 30.00 2 x 160 (SSD) 0 TRUE 1 Gib TRUE
Compute optimized c3.8xlarge 108.0 716.8 32 Xeon E5-2680v2 2.8 60.00 2 x 320 (SSD) 0 FALSE 10 Gib TRUE
Compute optimized c3.large 7.0 44.8 2 Xeon E5-2680v2 2.8 3.75 2 x 16 (SSD) 0 FALSE 100 Mib TRUE
Compute optimized c3.xlarge 14.0 89.6 4 Xeon E5-2680v2 2.8 7.50 2 x 40 (SSD) 0 TRUE 100 Mib TRUE
Compute optimized c4.2xlarge 31.0 371.2 8 Xeon E5-2666v3 2.9 15.00 EBS only 0 TRUE 1 Gib TRUE
Compute optimized c4.4xlarge 62.0 742.4 16 Xeon E5-2666v3 2.9 30.00 EBS only 0 TRUE 1 Gib TRUE
Compute optimized c4.8xlarge 132.0 1670.4 36 Xeon E5-2666v3 2.9 60.00 EBS only 0 TRUE 10 Gib TRUE
Compute optimized c4.large 8.0 92.8 2 Xeon E5-2666v3 2.9 3.75 EBS only 0 TRUE 100 Mib TRUE
Compute optimized c4.xlarge 16.0 185.6 4 Xeon E5-2666v3 2.9 7.50 EBS only 0 TRUE 100 Mib TRUE
Compute optimized cc2.8xlarge 88.0 665.6 32 Xeon E5-2670 2.6 60.50 4 x 840 0 FALSE 10 Gib FALSE
Dense storage d2.2xlarge 28.0 307.2 8 Xeon E5-2676v3 2.4 61.00 6 x 2000 0 TRUE 1 Gib TRUE
Dense storage d2.4xlarge 56.0 614.4 16 Xeon E5-2676v3 2.4 122.00 12 x 2000 0 TRUE 1 Gib TRUE
Dense storage d2.8xlarge 116.0 1382.4 36 Xeon E5-2676v3 2.4 244.00 24 x 2000 0 TRUE 10 Gib TRUE
Dense storage d2.xlarge 14.0 153.6 4 Xeon E5-2676v3 2.4 30.50 3 x 2000 0 TRUE 100 Mib TRUE
GPU instances cg1.4xlarge 33.5 185.6 16 Xeon x5570 2.9 22.00 2 x 840 896 FALSE 10 Gib FALSE
GPU instances g2.2xlarge 26.0 166.4 8 Xeon E5-2670 2.6 15.00 1 x 60 (SSD) 1536 TRUE 1 Gib FALSE
GPU instances g2.8xlarge 104.0 665.6 32 Xeon E5-2670 2.6 60.00 2 x 120 (SSD) 6144 FALSE 10 Gib FALSE
Memory optimized cr1.8xlarge 88.0 665.6 32 Xeon E5-2670 2.6 244.00 2 x 120 (SSD) 0 FALSE 10 Gib FALSE
Memory optimized r3.2xlarge 26.0 160.0 8 Xeon E5-2670v2 2.5 61.00 1 x 160 (SSD) 0 TRUE 1 Gib TRUE
Memory optimized r3.4xlarge 52.0 320.0 16 Xeon E5-2670v2 2.5 122.00 1 x 320 (SSD) 0 TRUE 1 Gib TRUE
Memory optimized r3.8xlarge 104.0 640.0 32 Xeon E5-2670v2 2.5 244.00 2 x 320 (SSD) 0 FALSE 10 Gib TRUE
Memory optimized r3.large 6.5 40.0 2 Xeon E5-2670v2 2.5 15.00 1 x 32 (SSD) 0 FALSE 100 Mib TRUE
Memory optimized r3.xlarge 13.0 80.0 4 Xeon E5-2670v2 2.5 30.50 1 x 80 (SSD) 0 TRUE 100 Mib TRUE
Storage optimized hi1.4xlarge 35.0 153.6 16 Xeon Family 2.4 60.50 2 x 1024 (SSD) 0 FALSE 10 Gib FALSE
Storage optimized hs1.8xlarge 35.0 256.0 16 Xeon E5-2650 2.0 117.00 24 x 2048 0 FALSE 10 Gib FALSE
Storage optimized i2.2xlarge 27.0 160.0 8 Xeon E5-2670v2 2.5 61.00 2 x 800 (SSD) 0 TRUE 1 Gib TRUE
Storage optimized i2.4xlarge 53.0 320.0 16 Xeon E5-2670v2 2.5 122.00 4 x 800 (SSD) 0 TRUE 1 Gib TRUE
Storage optimized i2.8xlarge 104.0 640.0 32 Xeon E5-2670v2 2.5 244.00 8 x 800 (SSD) 0 FALSE 10 Gib TRUE
Storage optimized i2.xlarge 14.0 80.0 4 Xeon E5-2670v2 2.5 30.50 1 x 800 (SSD) 0 TRUE 100 Mib TRUE

strong linear relationship with GFLOPS within a same instance
type, the more we add instance types in that comparison, the
more it deviates from the linearity. The relationship between
the ECU and GFLOPS is thus more complex than that and
if we also consider the processor generations (i.e. Xeon Core,
Nehalem, Sandy Bridge, Ivy Bridge or Haswell) we obtain a
better linear fitting (adjusted R2: 0.96). This is remarkable as
it should be a redundant information with GFLOPS. It seems
thus that ECU is more complex than just a relationship with
the sole GFLOPS metric as claimed by Amazon, ECU seems
also dependent on the processor generation and probably some
other characteristics.
Because of this lack of information on how is really calculated
an ECU and the fact that there exists a linear relationship be-
tween ECU and GFLOPS, we propose to use GFLOPS instead
of ECU in the sequel. This will enable us to compare the
processing performance of EC2 instances and HPC computing
nodes with a single metric that is well known and that can
actually be measured.

Toward a new Amazon EC2 Price Model linked to their
respective Computing Performance

Only two regions are available in Europe at this time,
one in Ireland and one in Frankfurt (Germany), we choose to
focus on the Ireland region as its instance prices are cheaper
and Frankfurt region was launched in the end of 2014 and
does not offer all the instance types yet. In order to have a
coherent instance price that enables to compare with the cluster
costs and taking into account the hardware performance, we
propose to use a multiple linear regression approach in order
to compute an Amazon EC2 price model. Based on this
model we will be able to determine for our local machines
a fair EC2 equivalent price that will reflect their hardware
performance, as proposed later in the section VI. Note that
Amazon offers different purchasing modes for its instances.

The "On-Demand" mode is the most common and allows to
pay a fixed rate by the hour with no commitment. In the rest
of this section, we present our computed results for our price
model using the proposed rate for this mode. So to establish
an accurate price model, we have to take into consideration
additional characteristics than the pure peak performance of the
considered resource (in GFLOPS). Indeed, we have observed
that instances that belong to the same type have prices that tend
to be linearly dependent on their performance. i.e. instance
c3.4xlarge is two times more expensive than c3.2xlarge but
its number of cores, available memory and disk size are two
times larger. Thus for each instance type we compute a pricing
linear model based on linear regression analysis. We select
the model parameters in two steps. (1) First we perform an
automated stepwise selection, then (2) from the meaningful
parameters detected we manually assess the ones that are the
most representative in the model via R2 shrinkage.
Among many parameters evaluated, we established that the
significant ones are: Processor speed (GFLOPS), Memory size
(GB), Disk Size (GB) and number of GPU cores. It follows that
the new price model for EC2 instances prices can be described
through the Equation 1:

(1)

Instance_Price = α ∗GFLOPS

+ β ∗Memory_GB

+ γ ∗Disk_GB

+ δ ∗Nb_GPUs

Furthermore, we have detected that the instances that were
released in the same time period could be grouped in the same
price model without changing too much its fitting. We thus
end up with five pricing models, depending on the instance
generation, i.e. release period of the instance. We labeled these

289

Authorized licensed use limited to: University of Illinois. Downloaded on May 22,2024 at 19:16:25 UTC from IEEE Xplore. Restrictions apply.

Table V. COEFFICIENTS OF OUR NEW EC2 PRICE MODEL FOR ON DEMAND INSTANCES, WITH FITTING PERFORMANCE EVALUATION.

Model Types
GFLOPS

(α)
MemGiB

(β)
DiskGiB

(γ)
GPUs

(δ)
Adj. R2 P-Value

1st Gen. m1, c1, m2, cg1 0.0039522 0.0061130 0.0000670 0.0015395 0.9999909 0e+00
2nd Gen. cc2, m3, hi1 -0.0035266 0.0355353 0.0007284 0.0000000 0.9999785 1e-07
3rd Gen. hs1, cr1, g2, c3 0.0017209 0.0106101 0.0000655 0.0001644 1.0000000 0e+00
4th Gen. i2, r3, c4 0.0009952 0.0081883 0.0007605 0.0000000 0.9998832 0e+00
5th Gen. m4, d2 0.0000000 0.0173750 0.0000342 0.0000000 1.0000000 0e+00

−3.266%

0.212%

0%

−0.069%
−1.108%

−9.686%

0.09%

0.104%

−0.017%

−0.017%

0.0

0.5

1.0

1.5

2.0

c1
.m

ed
iu

m

c1
.x

la
rg

e

cg
1.

4x
la

rg
e

m
1.

la
rg

e

m
1.

m
ed

iu
m

m
1.

sm
al

l

m
1.

xl
ar

ge

m
2.

2x
la

rg
e

m
2.

4x
la

rg
e

m
2.

xl
ar

ge

P
ric

e

Observed

Predicted

Price Model Fitting

(a) 1st Gen.

−0.002%

−0.002%

0.38%

−3.522%
−17.307%

0.38%

0

1

2

3

cc
2.

8x
la

rg
e

hi
1.

4x
la

rg
e

m
3.

2x
la

rg
e

m
3.

la
rg

e

m
3.

m
ed

iu
m

m
3.

xl
ar

ge

P
ric

e

Observed

Predicted

Price Model Fitting

(b) 2nd Gen.

0.003%

0.003%

0.003%

−0.858%
0.003%

0%

0%

0%

0%

0

1

2

3

4

5

c3
.2

xl
ar

ge

c3
.4

xl
ar

ge

c3
.8

xl
ar

ge

c3
.la

rg
e

c3
.x

la
rg

e

cr
1.

8x
la

rg
e

g2
.2

xl
ar

ge

g2
.8

xl
ar

ge

hs
1.

8x
la

rg
e

P
ric

e

Observed

Predicted

Price Model Fitting

(c) 3rd Gen.

−7.265%

−7.265%

1.935%

−7.265% −7.265%

−0.027%

0%

0%

−0.027%
0.051%

0.051%

0.051%

−4.296%
0.051%

0

2

4

6

c4
.2

xl
ar

ge

c4
.4

xl
ar

ge

c4
.8

xl
ar

ge

c4
.la

rg
e

c4
.x

la
rg

e

i2
.2

xl
ar

ge

i2
.4

xl
ar

ge

i2
.8

xl
ar

ge

i2
.x

la
rg

e

r3
.2

xl
ar

ge

r3
.4

xl
ar

ge

r3
.8

xl
ar

ge

r3
.la

rg
e

r3
.x

la
rg

e

P
ric

e

Observed

Predicted

Price Model Fitting

(d) 4th Gen.

Figure 4. Evaluation of Proposed EC2 Price Models Fittings (with error rates) against actual On Demand instance prices.

models "1st Gen", "2nd Gen", "3rd Gen", "4th Gen" and "5th
Gen" to reflect this matching instance generation. Refining this
process several times gives us five models, whose parameters
for the On Demand pricing model are described in Table V.
We have evaluated the five models individually and we provide
these results in Figure 4, the error rate in percentage is also
given for each instance. Due to space limitation and because it
present a perfect linear fitting, the 5th model evaluation figure
is not presented here. We can see that the fitting is very good
for all the models and the error rate is low.

VI. APPLICATION OF THE NEW EC2 PRICE MODEL

AGAINST THE IN-HOUSE UL HPC FACILITY

A. Hourly Price Model

With the new price model computed in V, we are now
able to give an EC2 equivalent price for each class of node
of our local clusters. This means that even though not all the

cluster nodes have a perfect cloud instance match, we are still
able to determine what would be its equivalent price on EC2
if that matching instance was available. This information is
later used to assess the interest of operating a given node
class regarding renting an On Demand instance with the same
performance on the cloud. Such an estimation is proposed
in Figure 5 which presents the ratio, for each node class in
the cluster, of the EC2 Equivalent Price based on the closest
possible existing EC2 instance, versus the operating cost of the
considered node as evaluated in the section III (see Table II).
We insist on reminding that the operating cost provided in
Table II represents the maximum cost scenario where the
HPC infrastructure is used at 100%. For a lower utilization
of the cluster, this operating cost will be decreased due to
lower energy usage. What we observe is that for some node
classes, the ratio is close to 1, meaning that operating in-house
these HPC nodes costs about the same price as renting the
corresponding instance on Amazon. Thus it may be interesting

290

Authorized licensed use limited to: University of Illinois. Downloaded on May 22,2024 at 19:16:25 UTC from IEEE Xplore. Restrictions apply.

0

2

4

6
d−

cl
us

te
r1

e−
cl

us
te

r1

h−
cl

us
te

r1

r−
cl

us
te

r1

s−
cl

us
te

r1

ga
ia

−
[1

−
60

]

ga
ia

−
[1

23
−

15
4]

ga
ia

−
[6

1−
62

]

ga
ia

−
[6

3−
72

]

ga
ia

−
[7

5−
79

]

ga
ia

−
[8

3−
12

2]

ga
ia

−
73

ga
ia

−
74

R
at

io
 E

C
2

E
qu

iv
al

en
t P

ric
e

ov
er

 O
pe

ra
tin

g
C

os
t Corresponding

EC2 Instance

c3.4xlarge

r3.8xlarge

g2.2xlarge

g2.8xlarge

r3.4xlarge

Figure 5. Ratio between the EC2 Equivalent Price of our in-house HPC
Resources with regards their respective TCO estimation.

to rent these kind of resources on EC2 instead of operating
them locally. However for all the other ones the results are
more mitigated. Some node classes also have low ratio (around
2) but some others have very high ratio (more than 4). For
these the renting of such kind of instance would be simply too
costly.
The above comparison is based on "On Demand" instance
prices. In this purchase model, the customer pays a fixed rate
by the hour with no commitment and we just showed that
in this scenario, the acquisition of an in-house HPC facility
is probably a more cost-effective solution. Actually, Amazon
proposes cheaper options for the instance prices:

• Reserved instances provide a capacity reservation, and
offer a significant discount on the hourly charge for
an instance

• Spot instances enable to bid a price for a given
instance, and thus may lead to even greater saving

This last renting mode remains too hard to model accu-
rately. However we extended our pricing model against the
purchased rate offered in the "Reserved" mode. There are
three payment options in this case: (1) No Upfront: this option
provides access to a Reserved Instance without requiring an
upfront payment, (2) Partial Upfront: this option requires a
part of the Reserved Instance to be paid upfront and the
remaining hours in the term are billed at a discounted hourly
rate, regardless of usage. (3) All Upfront: a full payment is
made at the start of the term, with no other costs incurred for
the remainder of the term regardless of the number of hours
used. In all cases, for reserved purchase option, the important
thing to know is that the option is attached to one instance
only and the reservation price has to be paid even though the
instance is used or not. Thus the corresponding upfront price
has to be paid for each EC2 instance needed. Moreover, for the
reserved purchase it is possible to subscribe a contract based on
1 year or 3 years. However due to the frequent releases of new
EC2 instances and the price drops of the older ones, it seems
too risky to subscribe to a 3 years contract even though the
savings are more important than for the 1 year basis. Because

of this we will consider only the 1 year reserved option.
While we also achieved a very good fitting for all the models
with a low error rate, it seemed more pertinent to us to propose
from these results a general overview of the in-house HPC
nodes costs when compared to all the considered EC2 pur-
chasing mode (i.e. On Demand, All Upfront, Partial Upfront
and No Upfront) and prices for the different renting modes.
This complete cost analysis is depicted in the Figure 6. It can
be seen that there exist a few cases (for the d-cluster1-*,
h-cluster1-* and gaia-[61,62] nodes) where the
EC2 Reserved instances are more cost-effective than the in-
house resources. Again, for all the other cases, and thus even
when a cheaper purchasing alternative is chosen for EC2
instances, it remains more efficient, from a pure cost point
of view, to consider the acquisition of the corresponding HPC
resources rather than renting them on the Cloud.

B. Yearly Price Model Applied to Real Cluster Usage

In the previous section we compared the costs of operating
a local cluster node versus its equivalent price on EC2 based
on our cost model. We saw that depending on what the user
specifically asks to the system in terms of resources to run his
job, the associated price largely varies. Now we investigate
how this price difference impacts the costs on a yearly basis.
For that purpose we analyzed all job requests on the reference
period of year 2014. Using the logs form the batch scheduler
we can extract which nodes were allocated to the jobs. Based
on the prices computed in Figure 6 and the knowledge of nodes
associated to jobs we are capable of calculating the yearly cost
for the year 2014 to operate the in-house cluster and the EC2
equivalent price for the following pricing modes: On Demand,
Reservation with all upfront, partial upfront and no upfront.

0

1000

2000

in−house
 cost

all
upfront

partial
upfront

no
upfront

on
demand

Ye
ar

ly
 P

ric
e

(T
ho

us
an

ds
 o

f D
ol

la
rs

)

Figure 7. Annual cost for year 2014 of UL workload if operated locally or
rented on EC2.

We present these results in Figure 7. It may seem surprising
at first that the cost of operating the cluster locally is 40%
cheaper than renting on EC2 with the all upfront reserved mode
and 2.5 times less expensive for on demand pricing. Actually,
a large part of the workload from chaos and gaia use nodes
with a low local operating cost compared to their EC2 relative
price. This result particularly shows that the migration of HPC
workloads to the cloud is not only a problem of adaptability
of the cloud performance to HPC needs but also a problem of
correctly determining which types of job are good candidates
to be run on the cloud in order to prevent such cost overheads.

291

Authorized licensed use limited to: University of Illinois. Downloaded on May 22,2024 at 19:16:25 UTC from IEEE Xplore. Restrictions apply.

0

5

10

d−
cl

us
te

r1

e−
cl

us
te

r1

h−
cl

us
te

r1

r−
cl

us
te

r1

s−
cl

us
te

r1

ga
ia

−
[1

−
60

]

ga
ia

−
[1

23
−

15
4]

ga
ia

−
[6

1−
62

]

ga
ia

−
[6

3−
72

]

ga
ia

−
[7

5−
79

]

ga
ia

−
[8

3−
12

2]

ga
ia

−
73

ga
ia

−
74

P
ric

e
(D

ol
la

r)

ULHPC Operating Cost

EC2 Equivalent All Upfront

EC2 Equivalent Partial Upfront

EC2 Equivalent No Upfront

EC2 Equivalent OnDemand

Figure 6. Comparison of the in-house HPC resources operating cost with regards an equivalent Amazon EC2 instance for the different purchasing options (On
demand, All upfront, Partial upfront and No upfront).

VII. CONCLUSION

The objective of the present study was to evaluate the real
cost-effectiveness of Cloud Computing (CC) platform when
compared to an in-house HPC facility. To answer this question,
we propose in this article three main contributions:

1) A representative Total Cost of Ownership (TCO)
analysis of a medium-size academic HPC facility,
which is based on our own experience while manag-
ing this platform within our research institution since
2007.

2) A novel price model for the instances offered by
the main Cloud IaaS actors (Amazon EC2) able to
compete with the performances of such an HPC
platform. Our proposed cost model is flexible and rely
on the inherent performance metrics (from an HPC
perspective) of the considered instance resources.

3) The application of this new model against the re-
sources of our local clusters to offer, when confronted
to the operating cost evaluated in the first part of this
study, a fair comparison of the prices and thus of the
investments linked to each of the solution (local own
infrastructure vs. rented resource on the Cloud).

Our proposed cost analysis is not only accurate (the fitting
of our novel cost model exhibits a low error rate), it also
advocates in general in favor of the acquisition of an in-
house HPC facility.

The perspective opened by the work are manifold. Firstly,
we wish to extend our analysis over the Spot instance that
permit to bid for the price of the resources. This offers a
chance for better cost-savings on the instance rate prices, and
thus might indicate other classes of HPC resources for which

the renting option makes sense. Also, we hope to benefit from
the planned move to a new campus, and thus the possibility to
monitor the building cost when implementing the brand new
HPC server rooms within this new site, to integrate the building
cost in our TCO analysis. This will also give us the opportunity
to update our model with regards the cost of cutting-edge HPC
technologies (Direct Liquid Cooling equipment, Infiniband
EDR interconnect etc.)

Acknowledgments: The experiments presented in this paper
were carried out using the HPC facilities of the University of
Luxembourg [1] – see http://hpc.uni.lu.

REFERENCES

[1] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos, “Management of
an academic hpc cluster: The ul experience,” in Proc. of the 2014 Intl.

Conf. on High Performance Computing & Simulation (HPCS 2014).
Bologna, Italy: IEEE, July 2014, pp. 959–967.

[2] X. Besseron, V. Plugaru, A. H. Mahmoudi, S. Varrette, B. Peters,
and P. Bouvry, “Performance Evaluation of the XDEM framework
on the OpenStack Cloud Computing Middleware,” in PARENG 2015.
Dubrovnik, Croatia: Civil-Comp Press, Mar. 24–28 2015.

[3] M. Guzek, S. Varrette, V. Plugaru, J. E. Pecero, and P. Bouvry,
“A Holistic Model of the Performance and the Energy-Efficiency of
Hypervisors in an HPC Environment,” Intl. J. on Concurrency and

Computation: Practice and Experience (CCPE), vol. 26, no. 15, pp.
2569–2590, Oct. 2014.

[4] S. Varrette, V. Plugaru, M. Guzek, X. Besseron, and P. Bouvry, “HPC
Performance and Energy-Efficiency of the OpenStack Cloud Middle-
ware,” in Proc. of the 43rd Intl. Conf. on Parallel Processing (ICPP-

2014), Heterogeneous and Unconventional Cluster Architectures and

Applications Workshop (HUCAA’14). Minneapolis, MN, US: IEEE,
Sept. 2014.

292

Authorized licensed use limited to: University of Illinois. Downloaded on May 22,2024 at 19:16:25 UTC from IEEE Xplore. Restrictions apply.

[5] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf,
H. J. Wasserman, and N. Wright, “Performance analysis of high per-
formance computing applications on the amazon web services cloud,”
in Cloud Computing Technology and Science (CloudCom), 2010 IEEE

Second International Conference on, Nov 2010, pp. 159–168.

[6] Z. Hill and M. Humphrey, “A quantitative analysis of high performance
computing with amazon’s ec2 infrastructure: The death of the local
cluster?” in Grid Computing, 2009 10th IEEE/ACM International

Conference on, Oct 2009, pp. 26–33.

[7] S. Akioka and Y. Muraoka, “Hpc benchmarks on amazon ec2,” in Ad-

vanced Information Networking and Applications Workshops (WAINA),

2010 IEEE 24th International Conference on, April 2010, pp. 1029–
1034.

[8] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A performance analysis of ec2 cloud computing services
for scientific computing,” in Cloud Computing, D. Avresky, M. Diaz,
A. Bode, B. Ciciani, and E. Dekel, Eds. Springer Berlin Heidelberg,
2010, vol. 34, pp. 115–131.

[9] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen, “Cloud versus
in-house cluster: Evaluating amazon cluster compute instances
for running mpi applications,” ser. SC ’11. New York, NY,
USA: ACM, 2011, pp. 11:1–11:10. [Online]. Available: http:
//doi.acm.org/10.1145/2063348.2063363

[10] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, “Case
study for running hpc applications in public clouds,” ser. HPDC ’10.
New York, NY, USA: ACM, 2010, pp. 395–401. [Online]. Available:
http://doi.acm.org.proxy.bnl.lu/10.1145/1851476.1851535

[11] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,
S. Saini, and R. Biswas, “Performance evaluation of amazon
ec2 for nasa hpc applications,” ser. ScienceCloud ’12. New
York, NY, USA: ACM, 2012, pp. 41–50. [Online]. Available:
http://doi.acm.org.proxy.bnl.lu/10.1145/2287036.2287045

[12] R. R. Exposito, G. L. Taboada, S. Ramos, J. TouriÃśo, and R. Doallo,
“Performance analysis of {HPC} applications in the cloud,” Future

Generation Computer Systems, vol. 29, no. 1, pp. 218 – 229, 2013,
including Special section: AIRCC-NetCoM 2009 and Special section:
Clouds and Service-Oriented Architectures. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X12001458

[13] P. Strazdins, J. Cai, M. Atif, and J. Antony, “Scientific application
performance on hpc, private and public cloud resources: A case study
using climate, cardiac model codes and the npb benchmark suite,” in
IPDPSW 2012, May 2012, pp. 1416–1424.

[14] A. Gupta, P. Faraboschi, F. Gioachin, L. Kale, R. Kaufmann, B.-S.
Lee, V. March, D. Milojicic, and C. Suen, “Evaluating and improving
the performance and scheduling of hpc applications in cloud,” Cloud

Computing, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[15] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, “The characteristics
of cloud computing,” in ICPPW 2010, Sept 2010, pp. 275–279.

[16] A. Gupta, O. Sarood, L. Kale, and D. Milojicic, “Improving hpc
application performance in cloud through dynamic load balancing,” in
CCGrid 2013 13th IEEE/ACM, May 2013, pp. 402–409.

[17] A. Marathe, R. Harris, D. K. Lowenthal, B. R. de Supinski, B. Rountree,
M. Schulz, and X. Yuan, “A comparative study of high-performance
computing on the cloud,” in Proceedings of the 22nd international

symposium on High-performance parallel and distributed computing.
ACM, 2013, pp. 239–250.

[18] I. Sadooghi, J. Hernandez Martin, T. Li, K. Brandstatter, Y. Zhao,
K. Maheshwari, T. Pais Pitta de Lacerda Ruivo, S. Timm, G. Gar-
zoglio, and I. Raicu, “Understanding the performance and potential of
cloud computing for scientific applications,” Cloud Computing, IEEE

Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[19] A. Carlyle, S. Harrell, and P. Smith, “Cost-effective hpc: The commu-
nity or the cloud?” in CloudCom 2010 IEEE, Nov 2010, pp. 169–176.

[20] A. S. McGough, M. Forshaw, C. Gerrard, S. Wheater, B. Allen,
and P. Robinson, “Comparison of a cost-effective virtual cloud
cluster with an existing campus cluster,” Future Generation Computer

Systems, vol. 41, no. 0, pp. 65 – 78, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X14001344

[21] J. O’Loughlin and L. Gillam, “Towards performance prediction for
public infrastructure clouds: An ec2 case study,” in CloudCom 2013

IEEE, vol. 1, Dec 2013, pp. 475–480.

APPENDIX

Table VI. IDEAL MANPOWER REPARTITION TO OPERATE A

MEDIUM-SIZE HPC FACILITY

SMP Services 1 Full Time Engineer (FTE)

Operating Systems 10%
Compilers 10%
COTS Applications 15%
Open Source Applications 30%
Storage 20%
Change Management 10%
Hardware 5%

SAN Storage and Parallel File System 1 FTE

Hardware 30%
Software (GPFS,Lustre,OneFS...) 50%
Allocation and Provisioning 10%
Capacity Planning 10%

Parallel Cluster 1.6FTE

Operating Systems 10%
Compilers 10%
COTS Applications 20%
Open Source Applications 30%
Storage 20%
Change Management 10%
Hardware 5%
Queueing systems 10%
Internal Cluster Network 5%
Monitoring 20%

Database 1 FTE

Installation and Configuration 10%
Tuning and Optimization 20%
Backups and DR 10%
Database Design 40%
Database Administration 20%

Web Services 40% FTE

Operating Systems 10%
Apache 10%
Application Server 10%
Server-based security 10%

Backup / Recovery 35% FTE

Server Admin 20%
Client Admin 10%
Capacity Planning 5%

Scientific Programming 2 FTE

Development 100%
Debugging/Testing 60%
Profiling/Optimization 40%

293

Authorized licensed use limited to: University of Illinois. Downloaded on May 22,2024 at 19:16:25 UTC from IEEE Xplore. Restrictions apply.

