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Dimensionality Reduction
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ML Workflow: Feature Engineering

New data and retraining
Business problem e

Feature
engineering

Data augmentation

Source: Amazon Web Services
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Feature Engineering

* Process of applying your knowledge of the data to create better features to train
your model with

* What to consider:
- Which features should | use?
- Do | need to transform these features in some way?
- How do | handle missing data?
- Do | need to create new features from the existing ones?

* You cannot just give raw data to a model and expect good results.

* This is where expertise such as domain knowledge comes into play.
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The Curse of Dimensionality

* Too many features can be problematic.
 Example:
- To predict how much money to make based on attributes of the people
- Features: age of a person, height, weight, address, car a person drives, etc.
* Feature engineering:
- Select the features most relevant to the problem at hand

- Domain knowledge comes into play
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Dimensionality Reduction

* Attempts to distill higher dimensional data down to a smaller number of
dimensions

* While preserving as much of the variance in the data as possible
* Reduce many features into fewer most important features

* Unsupervised dimensionality reduction techniques

- PCA (Principal Component Analysis)
- K-Means

* The goal is to distill many features into fewer features
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Dimensionality Reduction Techniques

K-Means Clustering
* A dimensionality reduction algorithm

e Reduce data down to K dimensions

Image source: https://stanford.edu/~cpiech/cs221/handouts/kmeans.html
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Dimensionality Reduction Techniques

Principal Component Analysis (PCA)

* Finds eigenvectors in the higher dimensional data

= These define hyperplanes that split the data while preserving the
most variance in it.

Principal Component Analysis (PCA)
Transformation

= The data gets projected onto these hyperplanes, which represent
the lower dimensions.

Original data Lower-dimensional
(high-dimensions) embedding

* Also useful for image compression and facial
recognition

PC2

| PCT
l

Principal component #2

Variable #1

Principal component #1

« Maximize variance al long PC1
+ Minimize residuals along PC2

Image source: https://www.biorender.com/template/principal-
component-analysis-pca-transformation
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Example: Iris Flower Data

* Iris dataset: comes with Scikit-learn . o
iris setosa iris versicolor iris virginica

* An Iris flower has petals and sepals (the
lower, supportive part)

* The length and width of the petals and sepal
for many Iris specimens

petal sepal petal sepal petal  sepal
- 4 dimensions for 3 different kinds of flowers
- Subspecies classification of each flower Image source: bt/ s analticsdnya.com/blog/2022/06/irisowers-clasification-uing:

 PCA allows us visualize this in 2 dimensions
instead of 4, while still preserving the most
info.
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Code Example: PCA

Documentation:

https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html#sphx-glr-auto-examples-datasets-plot-iris-
dataset-py

from sklearn.datasets import load_iris iris setosa
from sklearn.decomposition import PCA '
import pylab as pl

from itertools import cycle

iris versicolor iris virginica

iris = load_iris()
num_sample, num_feature = iris.data.shape petal  sepal petal  sepal petal  sepal

print(hnum_sample)
. Image source: https://www.analyticsvidhya.com/blog/2022/06/iris-flowers-classification-using-
pl’lnt(num_featu rE) machine-learning/

print(list(iris.target_names))
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Code Example: PCA

- Let’s take a look at the details by
running the code in a Jupyter Notebook

* A video is prepared for demonstrating
how to apply PCA on the Iris dataset.

* This video is provided in a Weekly
Schedule.

iris setosa iris versicolor iris virginica

petal sepal petal sepal petal  sepal

Image source: https://www.analyticsvidhya.com/blog/2022/06/iris-flowers-classification-using-

machine-learning/
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Model Finetuning
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Cross Validation (CV)

* An advance methods for splitting data into training and testing sets.

* The goal of train test split is to fairly evaluate a model’s performance on unseen
data.

* Not able to tune hyperparameters to the entire dataset.
* There is a way to train all the data and evaluate all the data.

e \We can achieve this with cross validation.
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Cross Validation (CV): Reasons & Steps

e Reasons for using cross validation during ML process:

- Tuning model hyperparameters

Testing different properties of the overall datasets

Iterating the training process

In case where your training dataset is small

Splitting them into 3 subsets may significantly affect training accuracy.

* Two steps
- Splitting the data into subsets (called folds)

- Rotating the training and test (validation) among them
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Cross Validation (CV): Properties

* Each fold with approximately the same size.
 Randomly selected data in each fold or stratified.
* All folds are used to train the model except one for validation.

* The validation fold should be rotated until all folds have become a validation fold only
once.

* Each example is recommended to be contained in one and only one fold.
* K-fold and CV are interchangeably used.

» K-fold describes how many folds you want to split your dataset into.
- e.g., if k=10, represeting 90% (training set) & 10% (validation set)
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Cross Validation (CV): Process
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Step-1
Step-2
Step-3
Step-4
Step-5
Step-6
Step-7
Step-8
Step-9

Fold-1  Fold-2 Fold-3 Fold-4 Fold-5 Fold-6 Fold-7 Fold-8 Fold-9  Fold-10
Train Train Train Train Train Train Train Train Train Test
Train Train Train Train Train Train Train Train Test Train
Train Train Train Train Train Train Train Test Train Train
Train Train Train Train Train Train : Train Train Train
Train Train Train Train Train Test Train Train Train Train
Train = Train Train Train Test Train Train Train Traln_ Train
Tain || Train Train Train Train Train Train Train || Train
Train Train T Train Train Teain Train Train Train
Train =W Tain || Train Train Train Train Train Train Train
stop- 10| Tain || Toain ™ Tain Train Teain Train Train Train Train
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Figure 2: A 10-fold representation of how each fold is used in the cross-validation process.

Image source: https://towardsdatascience.com/what-is-cross-validation-60c01f9d9e75
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Scikit-learn

* scikit-learn

from sklearn.model_selection import cross_validate

* Cross Validation Documentation
https://scikit-learn.org/stable/modules/cross validation.html

School of Information Sciences 17



https://scikit-learn.org/stable/modules/cross_validation.html

UNIVERSITY OF

ILLINOIS

AAAAAAAAAAAAAAAA

Grid Search

 Complex models often have multiple adjustable hyperparameters.

* A grid search is a way of training and validating a model on every possible
combination of multiple hyperparameter options.

e Scikit-learn includes a GridSearchCV class

* Itis capable of testing a dictionary of multiple hyperparameter options
through cross-validation.

* This allows for both cross-validation and a grid search to be performed in a
generalized way for any model.
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Grid Search

e Scikit-learn

from sklearn.model_selection import GridSearchCV

* Grid Search Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.model selection.GridSearchCV.html

* Let’s watch a video demonstrating how to use Grid Search with Cross
Validation.
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Questions or Comments?




Thank You!
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