
Page 1 of 5

Web Development Using Application Frameworks
Coding Assignment: Generic Class-Based Views
Instructions

Overview
The Generic Class-Based Views coding assignment is the next in a series of assignments in which we will
be developing the EZ University database system, a full C-R-U-D database application for simplified
university record keeping. In this assignment, we refactor our views.py code to take advantage of
generic class-based views (GCBVs).

Tools
I am expecting you to use the tools that are demonstrated in the tutorial videos: Anaconda and
PyCharm.

Tool Versions
Use the versions of PyCharm Professional, Anaconda, and Python that we installed during Week 1 of the
course when we created the e4_trainor_django_course virtual env. These versions are documented in
Instructions for Tool Versions, Installation, and Virtual Environments.

Tutorial Parts
This is a seven-part tutorial.

Part 1 – RedirectView and TemplateView
In this part of the tutorial, we refactor the code that redirects the empty URL string so that it is
implemented with the RedirectView GCBV. Additionally, we work together to add an About page to our
Web application and implement it using the TemplateView GCBV.

While accomplishing this goal, we will use the starter files provided in:

• gcbv_starter_files_parts_1_through_3.zip

Part 2 – Paginated ListViews
In this part of the tutorial, we begin by work together to refactor the InstructorList view so that it uses
the ListView GCBV. Some code needed for this part of the tutorial is provided in:

• gcbv_starter_files_parts_1_through_3.zip

After we have worked together to code and test our refactoring of InstructorList, you will complete this
part by doing a similar refactoring of the StudentList view on your own.

Page 2 of 5

Part 3 – Non-Paginated ListViews
In this part of the tutorial, we begin by working together to refactor the SectionList view so that it uses
the ListView GCBV.

After we have worked together to code and test our refactoring of SectionList, you will complete this
part by doing a similar refactoring the following views on your own:

• CourseList

• SemesterList

• RegistrationList

Part 4 – DetailViews
In this part of the tutorial, we begin by working together to refactor the following views so that they use
the DetailView GCBV:

• InstructorDetail

• SectionDetail

After we have worked together to code and test our refactoring of the views above, you will complete
this part by doing a similar refactoring of the following views on your own:

• CourseDetail

• SemesterDetail

• StudentDetail

• RegistrationDetail

Part 5 – CreateViews
In this part of the tutorial, we begin by working together to refactor the following views so that they use
the CreateView GCBV:

• InstructorCreate

• SectionCreate

After we have worked together to code and test our refactoring of the views above, you will complete
this part by doing a similar refactoring of the following views on your own:

• CourseCreate

• SemesterCreate

• StudentCreate

• RegistrationCreate

Page 3 of 5

Part 6 – UpdateViews
In this part of the tutorial, we begin by working together to refactor the following views so that they use
the UpdateView GCBV:

• InstructorUpdate

• SectionUpdate

After we have worked together to code and test our refactoring of the views above, you will complete
this part by doing a similar refactoring of the following views on your own:

• CourseUpdate

• SemesterUpdate

• StudentUpdate

• RegistrationUpdate

Part 7 – DeleteViews
In this part of the tutorial, we begin by working together to refactor the following views so that they use
the DeleteView GCBV:

• RegistrationDelete

• InstructorDelete

After we have worked together to code and test our refactoring of the views above, you will complete
this part by doing a similar refactoring of the following views on your own:

• SectionDelete

• CourseDelete

• SemesterDelete

• StudentDelete

Page 4 of 5

Exercises

1. Exercise 1 (Regular)
Follow Parts 1 through 7 of the tutorial instructions exactly.

2. Exercise 2 (Challenge)
My EZU tutorial videos do not include unit testing code. In the current semester, we are working
in groups during class breakout sessions to create unit testing code for the version of EZU that
we created in the previous assignment. To get credit for this Challenge Exercise, you will need to
copy the unit testing code developed by your group in the classroom and incorporate it into your
own copy of EZU. For this assignment, that means you will incorporate the unit tests for the
code that your group developed for the following assignment:

• Pagination and Staticfiles Assignment

Remember that unit testing code in your copy of EZU should also still include the unit tests
created by your group for earlier assignments.

When incorporated into your copy of EZU, the unit tests should run and show all tests passing. To
achieve this, you may need to refactor your code so that names used in the unit test code agree
with names used in your EZU project. Also, you will need to correct any errors that are exposed
by failing tests.

Page 5 of 5

Code Deliverables
You are expected to submit one properly organized PyCharm Django project that is ready to be tested
using PyCharm. Please refer to my tutorial video for details. Even if you have decided to do the
Challenge Exercise, just submit one Django project.

Non-Code Deliverables
Please be sure that the project you submit includes the following:

1. A test user (username = “tester”, password = “{iSchoolUI}”. PLEASE NOTE: We have changed the
password that in the current semester. The old password is mentioned in some of the tutorial
videos. Please be sure to use the new password instead.

2. Sufficient test data present in the database to allow for testing all functions

Submission Method
Follow the process that I demonstrated in the tutorial video on submitting your work. This involves:

• Locating the properly named directory associated with your project in the file system.
• Compressing that directory into a single .ZIP file using a utility program.
• Submitting the properly named zip file to the submission activity for this assignment.

File and Directory Naming

Please use the following naming scheme for naming your PyCharm project:

 surname_givenname_ezu

If this were my own project, I would name my PyCharm project as follows:

 trainor_kevin_ezu

Use a zip utility to create one zip file that contain the PyCharm project directory. The zip file should be
named according to the following scheme:

 surname_givenname_ezu.zip

If this were my own project, I would name the zip file as follows:

 trainor_kevin_ezu.zip

PLEASE NOTE: All file and directory names must be in lower case. Deductions will be made for
submissions that do not conform to this standard.

Due Date
Please see the Weekly Schedule for the date and time when this assignment is due.

Last Revised
2024-02-20

