
Page 1 of 6

Web Development Using Application Frameworks
Coding Assignment: Forms
Instructions

Overview
The Forms coding assignment is the next in a series of assignments in which we will be developing the EZ
University database system, a full C-R-U-D database application for a simplified university record
keeping. In the Forms coding assignment, we add Create, Update, and Delete functionality for each of
the EZ University model classes. The result is a full-featured C-R-U-D application.

Tools
I am expecting you to use the tools that are demonstrated in the tutorial videos: Anaconda and
PyCharm.

Tool Versions
Use the versions of PyCharm Professional, Anaconda, and Python that we installed during Week 1 of the
course when we created the e4_trainor_django_course virtual env. These versions are documented in
Instructions for Tool Versions, Installation, and Virtual Environments.

Starter Files
Please note that I have provided starter files for use in the tutorial. You may download them from the
Weekly Schedule:

• starter_files_for_forms_coding_assignment.zip

Tutorial Parts
This is a three-part tutorial.

Page 2 of 6

In Part 1, we implement the Create pages. During the video, I code and test all parts required to
implement the Create pages for the following EZU model classes:

• Instructor

• Section

While doing so, I use the following checklist:

1. Create the ModelForm subclass ModelClassForm in forms.py (e.g., InstructorForm).
2. Create the template for this page: modelclass_form.html (e.g., instructor_form.html).
3. Create the URL Pattern for this page.
4. Create the class-based view for this page: ModelClassCreate in views.py (e.g., InstructorCreate).
5. In the modelclass_list.html file (e.g., instructor_list.html):

a. Add the “Create New ModelClass” link code (e.g., “Create New Instructor”).
6. Test.

At the end of the Part 1 tutorial video, you are instructed to perform similar coding and testing for the
remaining EZU model classes on your own:

• Course

• Semester

• Student

• Registration

Page 3 of 6

In Part 2, we implement the Update pages. During the video, I code and test all parts required to
implement the Update pages for the following EZ University model classes:

• Instructor

• Section

While doing so, I use the following checklist:

1. Create the URL Pattern for this page (courseinfo_modelclass_update_urlpattern).
2. Add the get_update_url() method to the model class in models.py.
3. Add the ModelClassUpdate class-based view to views.py (e.g., InstructorUpdate).
4. Create the modelclass_form_update.html file: (e.g., instructor_form_update.html).
5. In the modelclass _detail.html file (e.g., instructor_detail.html):

• add the “Edit ModelClass code (e.g., “Edit Instructor).
6. Test.

At the end of the Part 2 tutorial video, you are instructed to perform similar coding and testing for the
remaining EZ University model classes on your own:

• Course

• Semester

• Student

• Registration

Page 4 of 6

In Part 3, we implement the Delete pages. During the video, I code and test all parts required to
implement the Delete pages for the following EZ University model classes:

• Registration (does not require a refuse_delete.html file).

• Instructor

• Section

While doing so, I use the following checklist:

1. Create the URL Pattern for this page. (courseinfo_modelclass_delete_urlpattern).
2. Add the get_delete_url() method to the model class in models.py .
3. Add the ModelClassDelete class-based view to views.py (e.g., InstructorDelete).
4. Create the modelclass_confirm_delete.html file (e.g., instructor_confirm_delete).
5. If appropriate (not Registration model class), create the modelclass _refuse_delete.html file (e.g.,

instructor_refuse_delete.html).
6. In the modelclass _detail.html file (e.g., instructor_detail.html):

• add the “Delete ModelClass code (e.g., “Delete Instructor).
7. Test

At the end of the Part 3 tutorial video, you are instructed to perform similar coding and testing for the
remaining EZ University model classes on your own:

• Course

• Semester

• Student

Page 5 of 6

Exercises

1. Exercise 1 (Regular)
Follow Parts 1, 2, and 3 of the tutorial instructions exactly.

2. Exercise 2 (Challenge)
My EZU tutorial videos do not include unit testing code. In the current semester, we are working
in groups during class breakout sessions to create unit testing code for the version of EZU that
we created in the previous assignment. To get credit for this Challenge Exercise, you will need to
copy the unit testing code developed by your group in the classroom and incorporate it into your
own copy of EZU. For this assignment, that means you will incorporate the unit tests for the
code that your group developed for the following assignment:

• Link Pages Assignment

Remember that unit testing code in your copy of EZU should also still include the unit tests
created by your group for earlier assignments.

When incorporated into your copy of EZU, the unit tests should run and show all tests passing. To
achieve this, you may need to refactor your code so that names used in the unit test code agree
with names used in your EZU project. Also, you will need to correct any errors that are exposed
by failing tests.

Page 6 of 6

Code Deliverables
You are expected to submit one properly organized PyCharm Django project that is ready to be tested
using PyCharm. Please refer to my tutorial video for details. Even if you have decided to do Exercise 2,
just submit one Django project.

Non-Code Deliverables
Please be sure that the project you submit includes the following:

1. A test user (username = “tester”, password = “{iSchoolUI}”. PLEASE NOTE: We have changed the
password that in the current semester. The old password is mentioned in some of the tutorial
videos. Please be sure to use the new password instead.

2. Sufficient test data present in the database to allow for testing all functions

Submission Method
Follow the process that I demonstrated in the tutorial video on submitting your work. This involves:

• Locating the properly named directory associated with your project in the file system.
• Compressing that directory into a single .ZIP file using a utility program.
• Submitting the properly named zip file to the submission activity for this assignment.

File and Directory Naming

Please use the following naming scheme for naming your PyCharm project:

 surname_givenname_ezu

If this were my own project, I would name my PyCharm project as follows:

 trainor_kevin_ezu

Use a zip utility to create one zip file that contain the PyCharm project directory. The zip file should be
named according to the following scheme:

 surname_givenname_ezu.zip

If this were my own project, I would name the zip file as follows:

 trainor_kevin_ezu.zip

PLEASE NOTE: All file and directory names must be in lower case. Deductions will be made for
submissions that do not conform to this standard.

Due Date
Please see the Weekly Schedule for the date and time when this assignment is due.

Last Revised
2024-02-20

