
Python Objects
Charles Severance

Python for Everybody
www.py4e.com

Warning
• This lecture is very much about definitions and

mechanics for objects
• This lecture is a lot more about “how it works” and less

about “how you use it”
• You won’t get the entire picture until this is all looked at

in the context of a real problem
• So please suspend disbelief and learn technique for the

next 40 or so slides…

https://docs.python.org/3/tutorial/datastructures.html

https://docs.python.org/3/library/sqlite3.html

Lets Start with Programs

inp = input('Europe floor?')
usf = int(inp) + 1
print('US floor', usf)

Europe floor? 0
US floor 1

ProcessInput Output

Object Oriented
• A program is made up of many cooperating objects

• Instead of being the “whole program” - each object is a
little “island” within the program and cooperatively
working with other objects

• A program is made up of one or more objects working
together - objects make use of each other’s capabilities

Object
• An Object is a bit of self-contained Code and Data

• A key aspect of the Object approach is to break the
problem into smaller understandable parts (divide and
conquer)

• Objects have boundaries that allow us to ignore un-needed
detail

• We have been using objects all along: String Objects,
Integer Objects, Dictionary Objects, List Objects...

Object

Input

Output

String
Object

Dictionary

Objects get
created and

used

Code/Data

Input

Output

Code/Data

Code/Data

Code/Data

Objects are
bits of code

and data

Code/Data

Input

Output

Code/Data

Code/Data

Code/Data

Objects hide detail
- they allow us to

ignore the detail of
the “rest of the

program”.

Code/Data

Input

Output

Code/Data

Code/Data

Code/Data

Objects hide detail -
they allow the “rest
of the program” to
ignore the detail

about “us”.

Definitions

• Class - a template

• Method or Message - A defined capability of a class

• Field or attribute- A bit of data in a class

• Object or Instance - A particular instance of a class

Terminology: Class

http://en.wikipedia.org/wiki/Object-oriented_programming

Defines the abstract characteristics of a thing (object), including the
thing's characteristics (its attributes, fields or properties) and the
thing's behaviors (the things it can do, or methods, operations or
features). One might say that a class is a blueprint or factory that

describes the nature of something. For example, the class Dog would
consist of traits shared by all dogs, such as breed and fur color

(characteristics), and the ability to bark and sit (behaviors).

Terminology: Instance

http://en.wikipedia.org/wiki/Object-oriented_programming

One can have an instance of a class or a particular object.
The instance is the actual object created at runtime. In

programmer jargon, the Lassie object is an instance of the
Dog class. The set of values of the attributes of a particular
object is called its state. The object consists of state and the

behavior that's defined in the object's class.

Object and Instance are often used interchangeably.

Terminology: Method

An object's abilities. In language, methods are verbs. Lassie, being a
Dog, has the ability to bark. So bark() is one of Lassie's methods. She
may have other methods as well, for example sit() or eat() or walk() or

save_timmy(). Within the program, using a method usually affects
only one particular object; all Dogs can bark, but you need only one

particular dog to do the barking

Method and Message are often used interchangeably.

http://en.wikipedia.org/wiki/Object-oriented_programming

Some Python Objects
>>> x = 'abc'
>>> type(x)
<class 'str'>
>>> type(2.5)
<class 'float'>
>>> type(2)
<class 'int'>
>>> y = list()
>>> type(y)
<class 'list'>
>>> z = dict()
>>> type(z)
<class 'dict'>

>>> dir(x)
[… 'capitalize', 'casefold', 'center', 'count',
'encode', 'endswith', 'expandtabs', 'find',
'format', … 'lower', 'lstrip', 'maketrans',
'partition', 'replace', 'rfind', 'rindex', 'rjust',
'rpartition', 'rsplit', 'rstrip', 'split',
'splitlines', 'startswith', 'strip', 'swapcase',
'title', 'translate', 'upper', 'zfill']
>>> dir(y)
[… 'append', 'clear', 'copy', 'count', 'extend',
'index', 'insert', 'pop', 'remove', 'reverse',
'sort']
>>> dir(z)
[…, 'clear', 'copy', 'fromkeys', 'get', 'items',
'keys', 'pop', 'popitem', 'setdefault', 'update',
'values']

A Sample Class

class PartyAnimal:
x = 0

def party(self) :
self.x = self.x + 1
print("So far",self.x)

an = PartyAnimal()

an.party()
an.party()
an.party()

This is the template
for making

PartyAnimal objects

class is a reserved
word

Each PartyAnimal
object has a bit of

data

Each PartyAnimal
object has a bit of

code
Construct a

PartyAnimal object
and store in an

Tell the an object
to run the party()

code within it

PartyAnimal.party(an)

class PartyAnimal:
x = 0

def party(self) :
self.x = self.x + 1
print("So far",self.x)

an = PartyAnimal()

an.party()
an.party()
an.party()

party()

an
self x

$ python party1.py
So far 1
So far 2
So far 3

Playing with dir() and type()

A Nerdy Way to Find Capabilities
• The dir() command lists

capabilities

• Ignore the ones with underscores
- these are used by Python itself

• The rest are real operations that
the object can perform

• It is like type() - it tells us
something *about* a variable

>>> y = list()
>>> type(y)
<class 'list'>
>>> dir(x)
['__add__', '__class__',
'__contains__', '__delattr__',
'__delitem__', '__delslice__',
'__doc__', … '__setitem__',
'__setslice__', '__str__',
'append', 'clear', 'copy',
'count', 'extend', 'index',
'insert', 'pop', 'remove',
'reverse', 'sort']
>>>

class PartyAnimal:
x = 0

def party(self) :
self.x = self.x + 1
print("So far",self.x)

an = PartyAnimal()

print("Type", type(an))
print("Dir ", dir(an))

$ python party3.py
Type <class '__main__.PartyAnimal'>
Dir ['__class__', ... 'party', 'x']

We can use dir() to find
the “capabilities” of our

newly created class.

Try dir() with a String
>>> x = 'Hello there'
>>> dir(x)
['__add__', '__class__', '__contains__', '__delattr__',
'__doc__', '__eq__', '__ge__', '__getattribute__',
'__getitem__', '__getnewargs__', '__getslice__', '__gt__',
'__hash__', '__init__', '__le__', '__len__', '__lt__',
'__repr__', '__rmod__', '__rmul__', '__setattr__', '__str__',
'capitalize', 'center', 'count', 'decode', 'encode', 'endswith',
'expandtabs', 'find', 'index', 'isalnum', 'isalpha', 'isdigit',
'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust',
'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex',
'rjust', 'rpartition', 'rsplit', 'rstrip', 'split',
'splitlines', 'startswith', 'strip', 'swapcase', 'title',
'translate', 'upper', 'zfill']

Object Lifecycle
http://en.wikipedia.org/wiki/Constructor_(computer_science)

Object Lifecycle
• Objects are created, used, and discarded

• We have special blocks of code (methods) that get called

- At the moment of creation (constructor)

- At the moment of destruction (destructor)

• Constructors are used a lot

• Destructors are seldom used

Constructor
The primary purpose of the constructor is to set up some
instance variables to have the proper initial values when
the object is created

class PartyAnimal:
x = 0

def __init__(self):
print('I am constructed')

def party(self) :
self.x = self.x + 1
print('So far',self.x)

def __del__(self):
print('I am destructed', self.x)

an = PartyAnimal()
an.party()
an.party()
an = 42
print('an contains',an)

$ python party4.py
I am constructed
So far 1
So far 2
I am destructed 2
an contains 42

The constructor and destructor are
optional. The constructor is

typically used to set up variables.
The destructor is seldom used.

Constructor
In object oriented programming, a constructor in a class
is a special block of statements called when an object is
created

http://en.wikipedia.org/wiki/Constructor_(computer_science)

Many Instances
• We can create lots of objects - the class is the template

for the object

• We can store each distinct object in its own variable

• We call this having multiple instances of the same class

• Each instance has its own copy of the instance variables

Constructors can have
additional parameters.

These can be used to set up
instance variables for the
particular instance of the

class (i.e., for the particular
object).

party5.py

class PartyAnimal:
x = 0
name = ""
def __init__(self, z):

self.name = z
print(self.name,"constructed")

def party(self) :
self.x = self.x + 1
print(self.name,"party count",self.x)

s = PartyAnimal("Sally")
s.party()

j = PartyAnimal("Jim")
j.party()
s.party()

class PartyAnimal:
x = 0
name = ""
def __init__(self, z):

self.name = z
print(self.name,"constructed")

def party(self) :
self.x = self.x + 1
print(self.name,"party count",self.x)

s = PartyAnimal("Sally")
s.party()

j = PartyAnimal("Jim")
j.party()
s.party()

s x
name:

j x
name:

We have two
independent

instances

Inheritance
http://www.ibiblio.org/g2swap/byteofpython/read/inheritance.html

Inheritance
• When we make a new class - we can reuse an existing

class and inherit all the capabilities of an existing class
and then add our own little bit to make our new class

• Another form of store and reuse

• Write once - reuse many times

• The new class (child) has all the capabilities of the old
class (parent) - and then some more

Terminology: Inheritance

http://en.wikipedia.org/wiki/Object-oriented_programming

‘Subclasses’ are more specialized versions of a class, which
inherit attributes and behaviors from their parent classes, and

can introduce their own.

class PartyAnimal:
x = 0
name = ""
def __init__(self, nam):

self.name = nam
print(self.name,"constructed")

def party(self) :
self.x = self.x + 1
print(self.name,"party count",self.x)

class FootballFan(PartyAnimal):
points = 0
def touchdown(self):

self.points = self.points + 7
self.party()
print(self.name,"points",self.points)

s = PartyAnimal("Sally")
s.party()

j = FootballFan("Jim")
j.party()
j.touchdown()

FootballFan is a class which
extends PartyAnimal. It has all
the capabilities of PartyAnimal

and more.

class PartyAnimal:
x = 0
name = ""
def __init__(self, nam):

self.name = nam
print(self.name,"constructed")

def party(self) :
self.x = self.x + 1
print(self.name,"party count",self.x)

class FootballFan(PartyAnimal):
points = 0
def touchdown(self):

self.points = self.points + 7
self.party()
print(self.name,"points",self.points)

s = PartyAnimal("Sally")
s.party()

j = FootballFan("Jim")
j.party()
j.touchdown()

x:

name: Sally

s

class PartyAnimal:
x = 0
name = ""
def __init__(self, nam):

self.name = nam
print(self.name,"constructed")

def party(self) :
self.x = self.x + 1
print(self.name,"party count",self.x)

class FootballFan(PartyAnimal):
points = 0
def touchdown(self):

self.points = self.points + 7
self.party()
print(self.name,"points",self.points)

s = PartyAnimal("Sally")
s.party()

j = FootballFan("Jim")
j.party()
j.touchdown()

x:
name: Jim

points:

j

Definitions
• Class - a template

• Attribute – A variable within a class

• Method - A function within a class

• Object - A particular instance of a class

• Constructor – Code that runs when an object is created

• Inheritance - The ability to extend a class to make a new class.

Summary

• Object Oriented programming is a very structured
approach to code reuse

• We can group data and functionality together and create
many independent instances of a class

Acknowledgements / Contributions

Thes slide are Copyright 2010- Charles R. Severance (www.dr-
chuck.com) of the University of Michigan School of Information
and made available under a Creative Commons Attribution 4.0
License. Please maintain this last slide in all copies of the
document to comply with the attribution requirements of the
license. If you make a change, feel free to add your name and
organization to the list of contributors on this page as you
republish the materials.

Initial Development: Charles Severance, University of Michigan
School of Information

… Insert new Contributors here

...

Additional Source Information
• Snowman Cookie Cutter" by Didriks is licensed under CC BY

https://www.flickr.com/photos/dinnerseries/23570475099

• Photo from the television program Lassie. Lassie watches as Jeff (Tommy Rettig) works on his bike is Public
Domain
https://en.wikipedia.org/wiki/Lassie#/media/File:Lassie_and_Tommy_Rettig_1956.JPG

