Python Objects

Charles Severance

Python for Everybody
www.py4e.com

This lecture is very much about definitions and
mechanics for objects

This lecture is a lot more about “how it works” and less
about “how you use it”

You won't get the entire picture until this is all looked at
in the context of a real problem

So please suspend disbelief and learn technique for the
next 40 or so slides...

5. Data Structures

This chapter describes some things you've learned about already in more detail, and adds some new things as
well.

5.1. More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

list.append(x)
Add an item to the end of the list. Equivalent to a[len(a):] = [x].

list.extend(L)

Extend the list by appending all the items in the given list. Equivalent to a[len(a):] = L.

list.insert(j, x)
Insert an item at a given position. The first argument is the index of the element before which to insert, so
a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is equivalent to a.append(x).
list. remove(x)

Remove the first item from the list whose value is x. It is an error if there is no such item.

1ist. pop([i)
Remove the item at the given position in the list, and return it. If no index is specified, a.pop() removes and
returns the last item in the list. (The square brackets around the i in the method signature denote that the

parameter is optional, not that you should type square brackets at that position. You will see this notation
frequently in the Python Library Reference.)

https://docs.python.org/3/tutorial/datastructures.html

12.6. sgqlite3 — DB-API 2.0 interface for SQLite
databases

Source code: Lib/sqglite3/

SQLite is a C library that provides a lightweight disk-based database that doesn’t require a separate server
process and allows accessing the database using a nonstandard variant of the SQL query language. Some
applications can use SQLite for internal data storage. It's also possible to prototype an application using SQLite
and then port the code to a larger database such as PostgreSQL or Oracle.

The sglite3 module was written by Gerhard Haring. It provides a SQL interface compliant with the DB-API 2.0
specification described by PEP 249,

To use the module, you must first create a Connection object that represents the database. Here the data will be
stored in the example.db file:

import sqlite3
conn = sglite3.connect('example.db')

You can also supply the special name :memory: to create a database in RAM.

Once you have a Connection, you can create a Cursor object and call its execute() method to perform SQL
commands:

c = conn.cursor()

Create table
c.execute('''CREATE TABLE stocks
(date text, trans text, symbol text, gty real, price real)''')

https://docs.python.org/3/library/sqlite3.html

Lets Start with Programs

Europe floor? 0O
inp = input('Europe floor?') US floor 1
usf = int(inp) + 1
print('US floor', usf)

TS

Object Oriented

® A program is made up of many cooperating objects

® Instead of being the “whole program” - each object is a
little “island” within the program and cooperatively
working with other objects

® A program is made up of one or more objects working
together - objects make use of each other’s capabilities

Object

An Object is a bit of self-contained Code and Data

A key aspect of the Object approach is to break the
problem into smaller understandable parts (divide and
conquer)

Objects have boundaries that allow us to ignore un-needed
detail

We have been using objects all along: String Objects,
Integer Objects, Dictionary Objects, List Objects...

Objects get
created and
used

Obijects are
bits of code
and data

Objects hide detalil
- they allow us to
ignore the detail of
the “rest of the
program”.

Objects hide detail -
they allow the “rest
of the program” to

ignore the detail
about “us”.

Definitions

Class - a template
Method or Message - A defined capability of a class
Field or attribute- A bit of data in a class

Object or Instance - A particular instance of a class

Terminology: Class

Defines the abstract characteristics of a thing (object), including the
thing's characteristics (its attributes, fields or properties) and the
thing's behaviors (the things it can do, or methods, operations or
features). One might say that a class is a blueprint or factory that

describes the nature of something. For example, the class Dog would
consist of traits shared by all dogs, such as breed and fur color
(characteristics), and the ability to bark and sit (behaviors).

http://en.wikipedia.org/wiki/Object-oriented programming

Terminology: Instance

One can have an instance of a class or a particular object.
The instance is the actual object created at runtime. In
programmer jargon, the Lassie object is an instance of the
Dog class. The set of values of the attributes of a particular
object is called its state. The object consists of state and the
behavior that's defined in the object's class.

Object and Instance are often used interchangeably.

http://en.wikipedia.org/wiki/Object-oriented programming

Terminology: Method

An object's abilities. In language, methods are verbs. Lassie, being a
Dog, has the ability to bark. So bark() is one of Lassie's methods. She
may have other methods as well, for example sit() or eat() or walk() or
save_timmy(). Within the program, using a method usually affects
only one particular object; all Dogs can bark, but you need only one
particular dog to do the barking

Method and Message are often used interchangeably.

http://en.wikipedia.org/wiki/Object-oriented programming

Some Python Objects

>>> dir(x)

>>> x = 'abc' [.. 'capitalize', 'casefold', 'center', 'count',
>>> type(x) 'encode’', 'endswith', 'expandtabs', 'find',
<class 'str'> 'format', .. 'lower', 'lstrip', 'maketrans',

>>> type(2.5) 'partition', 'replace', 'rfind', 'rindex', 'rjust'
<class 'float'> 'rpartition', 'rsplit', 'rstrip', 'split',

>>> type(2) 'splitlines', 'startswith', 'strip', 'swapcase',
<class 'int'> 'title', 'translate', 'upper', 'zfill']

>>> y = list() >>> dir(y)

>>> type(y) [.. 'append', 'clear', 'copy', 'count', 'extend',
<class 'list'> 'index', 'insert', 'pop', 'remove', 'reverse',
>>> z = dict() 'sort']

>>> type(z) >>> dir(z)

<class 'dict'> [.., 'clear', 'copy', 'fromkeys', 'get',6 'items',

'keys', 'pop', 'popitem', 'setdefault', 'update',
'values']

A Sample Class

. This is the template
class is a reserved

word class PartyAnimal: for making
x=0 PartyAnimal objects
Each PartyAnimal def party(self) : Ea_ch PartyAni_maI
object has a bit of self.x = self.x + 1 object has a bit of
code print("So far",self.x) data

Construct a

an = PartyAnimal() @ PartyAnimal object
and store in an

an.part
Tell the an object an.gart§8 C—) P arty Animal.party(an)

to run the party() an.party()
code within it

class PartyAnimal:
x=0

def party(self) :
self.x = self.x + 1
orint("So far",self.x)

an = PartyAnimal()

an.party()
an.party()
an.party()

an
self

$ python party1.py
So far 1
So far 2
So far 3

Playing with dir() and type()

A Nerdy Way to Find Capabilities

« The dir() command lists >>>y = list()

>>> type(y)
capabilities cclass 'list's

>>> dir(x)
« Ignore the ones with underscores ['__add ', '_class_ ',

- these are used by Python itself =~ ' contains °, ' delattr °,
' delitem ', ' delslice ',
Th | : h ' doc_ ', .. ' setitem ‘',
. e re.st are real operations that " setslice ', ' str ',
the object can perform 'append', 'clear', 'copy',
'count', 'extend', 'index',
 ltis like type() - it tells us ‘insert’, 'pop’', 'remove’,
. . 1 1 , 1 tl
something *about* a variable reverse , 'sort’]

>>>

class PartyAnimal:

x =0

def party(self)

self.x

print("So far",self.

= self.x + 1

an = PartyAnimal ()

print("Type", type(an))

print("Dir

, dir(an))

X)

We can use dir() to find
the “capabilities” of our
newly created class.

$ python party3.py
Type <class ' main_ .PartyAnimal'>
Dir [' «class ', ... 'party', 'x'

]

Try dir() with a String

>>> x = 'Hello there'

>>> dir(x)

[' add ', ' class ', ' —contains ', ' delattr ',

' doc ', ' eq ', ' ge ', ' getattribute ‘',

' getitem ', ' getnewargs ', ' getslice ', ' gt ‘',

' hash ', ' init ', ' le ‘', ' len ', ' 1t ',

' repr ', ' rmod ', ' rmul ', ' setattr ', ' str ',

‘capitalize', 'center', 'count', 'decode', 'encode', 'endswith',
'expandtabs', 'find', 'index', 'isalnum', 'isalpha', 'isdigit',
'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust',
'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex',
‘rjust', 'rpartition', 'rsplit', 'rstrip', 'split',
'splitlines', 'startswith', 'strip', 'swapcase', 'title’',
'translate', 'upper', 'zfill']

Object Lifecycle

http://en.wikipedia.org/wiki/Constructor (computer_science)

Object Lifecycle

Objects are created, used, and discarded

We have special blocks of code (methods) that get called
- At the moment of creation (constructor)

- At the moment of destruction (destructor)
Constructors are used a lot

Destructors are seldom used

Constructor

The primary purpose of the constructor is to set up some
Instance variables to have the proper initial values when
the object is created

class PartyAnimal:
x =0

$ python partyéd.py

def _ init_ (self): I am constructed

print('I am constructed')

So far 1
def party(self) : So far 2
self.x = self.x + 1 I am destructed 2
print('sSo far',self.x) an contains 42

def del (self):
print('I am destructed', self.x)

B . The constructor and destructor are
an = PartyAnimal/()

- optional. The constructor is
an.party () typically used to set up variables.
an = 42 The destructor is seldom used.

print('an contains',an)

Constructor

In object oriented programming, a constructor in a class

IS a special block of statements called when an object is
created

http://en.wikipedia.org/wiki/Constructor_(computer_science)

Many Instances

We can create lots of objects - the class is the template
for the object

We can store each distinct object in its own variable
We call this having multiple instances of the same class

Each instance has its own copy of the instance variables

Constructors can have

class PartyAnimal: .
additional parameters.

x =0

name = "" These can be used to set up
def init (self, z): instance variables for the
self.name = z particular instance of the

print(self.name, "constructed") . :
class (i.e., for the particular

def party(self) : object).
self.x = self.x + 1
print(self.name, "party count"”,self.x)

s = PartyAnimal("Sally")
s.party()

= PartyAnimal("Jim")
.party()
Ss.party() party5.py

. Ul

class PartyAnimal:

x =0

name = ""

def init (self, z):
self.name = z

print(self.name, "constructed")

def party(self)
self.x = self.x + 1
print(self.name, "party count"”,self.x)

s = PartyAnimal("Sally")

Ss.party()
We have two

= PartyAnimal("Jim") independent
.party() '
s.party() Instances

. Ul

Inheritance

http://www.ibiblio.org/g2swap/byteofpython/read/inheritance.html

Inheritance

When we make a new class - we can reuse an existing
class and inherit all the capabilities of an existing class
and then add our own little bit to make our new class

Another form of store and reuse
Write once - reuse many times

The new class (child) has all the capabilities of the old
class (parent) - and then some more

Terminology: Inheritance

‘Subclasses’ are more specialized versions of a class, which
inherit attributes and behaviors from their parent classes, and
can introduce their own.

http://en.wikipedia.org/wiki/Object-oriented programming

class PartyAnimal:
x =0
name =
def init (self, nam):
self.name = nam
print(self.name, "constructed")

def party(self) :
self.x = self.x + 1
print(self.name, "party count",self.x)

class FootballFan(PartyAnimal):
points = 0
def touchdown(self):
self.points = self.points + 7
self.party()
print(self.name, "points",self.points)

s = PartyAnimal(HsallY")
s.party()

j = FootballFan("Jim")

j.party()
j.touchdown ()

FootballFan is a class which
extends PartyAnimal. It has all
the capabilities of PartyAnimal

and more.

class PartyAnimal:

x =20 s = PartyAnimal("Sally")
name = "" s.party()
def init (self, nam):
self.name = nam j = FootballFan("Jim")
print(self.name, "constructed") j.party()

j.touchdown ()
def party(self) :
self.x = self.x + 1
print(self.name, "party count",self.x)

class FootballFan(PartyAnimal):

points = 0 name: Sally
def touchdown(self):

self.points = self.points + 7
self.party()
print(self.name, "points",self.points)

class PartyAnimal:

x =20 s = PartyAnimal("Sally")
name = "" s.party()
def init (self, nam):
self.name = nam j = FootballFan("Jim")
print(self.name, "constructed") j.party()

j.touchdown ()
def party(self) :
self.x = self.x + 1 "
print(self.name, "party count",self.x) J

class FootballFan(PartyAnimal):

points = 0 T
def touchdown(self): Nname. Jlm

self.points = self.points + 7

self.party() pOintS:

print(self.name, "points",self.points)

Definitions

Class - a template

Attribute — A variable within a class
Method - A function within a class
Object - A particular instance of a class
Constructor — Code that runs when an object is created

Inheritance - The ability to extend a class to make a new class.

Summary

Object Oriented programming is a very structured
approach to code reuse

We can group data and functionality together and create
many independent instances of a class

Acknowledgements / Contributions

Thes slide are Copyright 2010- Charles R. Severance (www.dr-
chuck.com) of the University of Michigan School of Information
and made available under a Creative Commons Attribution 4.0
License. Please maintain this last slide in all copies of the
document to comply with the attribution requirements of the
license. If you make a change, feel free to add your name and
organization to the list of contributors on this page as you
republish the materials.

Initial Development: Charles Severance, University of Michigan
School of Information

... Insert new Contributors here

Additional Source Information

» Snowman Cookie Cutter" by Didriks is licensed under CC
https://www.flickr.com/photos/dinnerseries/23570475099

* Photo from the television program Lassie. Lassie watches as Jeff (Tommy Rettig) works on his bike is

https://en.wikipedia.org/wiki/Lassie#/media/File:Lassie and Tommy Rettig 1956.JPG

