Week8: Feature Engineering

PRESENTER: JENNA KIM

COURSE: IS597MLC-SU2024

JULY 3, 2024

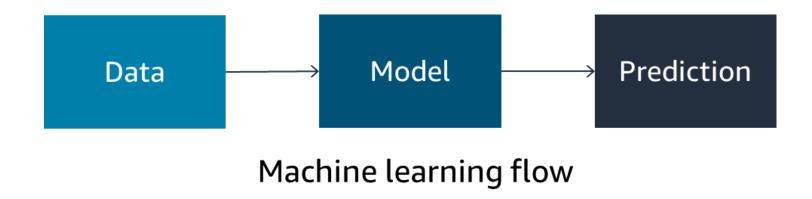
Outline

- Research problem formulation
- Collecting data
- Evaluate data & cleaning
- Feature engineering

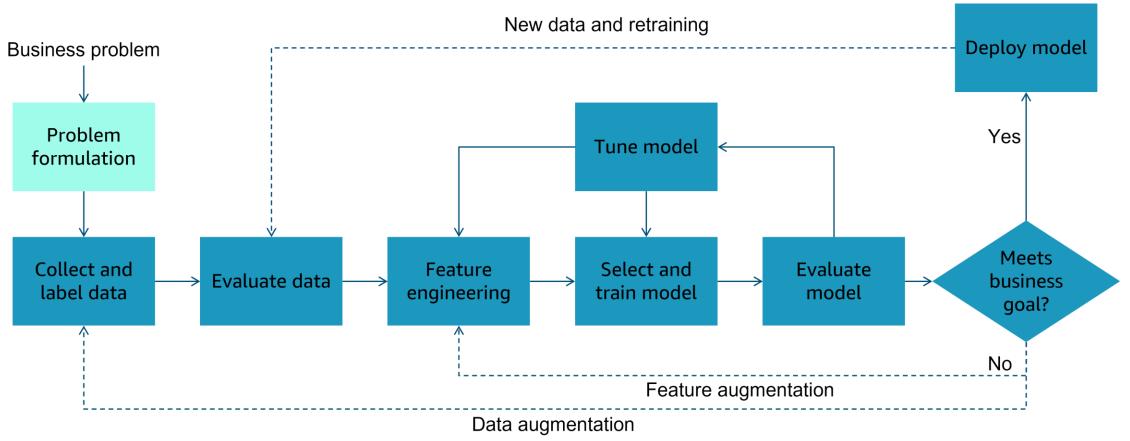
Part 1 Formulating Research Problems

Simplified ML Steps

Machine Learning focuses on *using data* to *train ML models* so these models can *make predictions*.



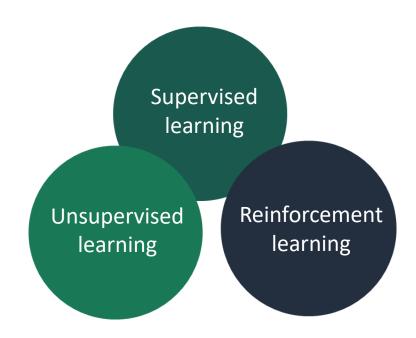
Machine Learning Workflow



Source: Amazon Web Services

Design Approach: Check List

- Is the problem a machine learning problem?
- Is the problem supervised or unsupervised?
- What is the target to predict?
- Do you have access to the data?
- What is the minimum performance?
- How would you solve this problem manually?
- What is the simplest solution?



Problem Formulation: Example 1

You want to identify fraudulent credit card transactions so that you can stop the transaction before it processes

Why?

Reduce the number of customers who end their membership because of fraud

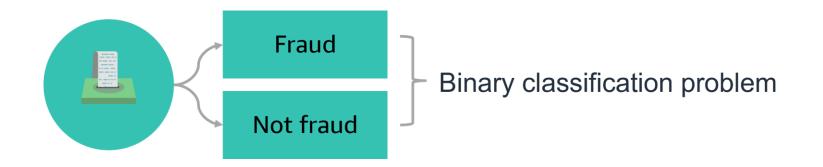
10% reduction in fraud claims in retail

Can you measure it?

Move from qualitative statements to quantitative statements that can be measured

Make it an ML Model

Credit card transaction is either *fraudulent* or *not fraudulent*.



Use historical data of fraud reports to help define your model.

Problem Formulation: Example 2

Wine quality dataset (source: UCI Wine quality dataset)

Question:

Based on the composition of the wine, can you predict the quality and therefore the price?

Why:

- View statistics
- Deal with outliers
- Scale numeric data

Citation

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

Problem Formulation: Example 3

Car Evaluation Dataset (Source: UCI Car evaluation dataset)

Question:

Can you use a car's attributes to predict whether the car will be purchased?

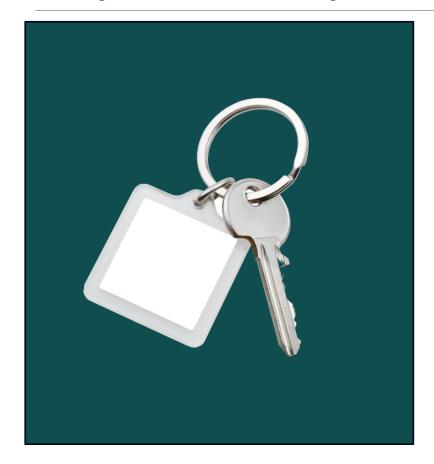
Why:

- View statistics
- Encode categorical data

Citation

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. Source: Amazon Web Services

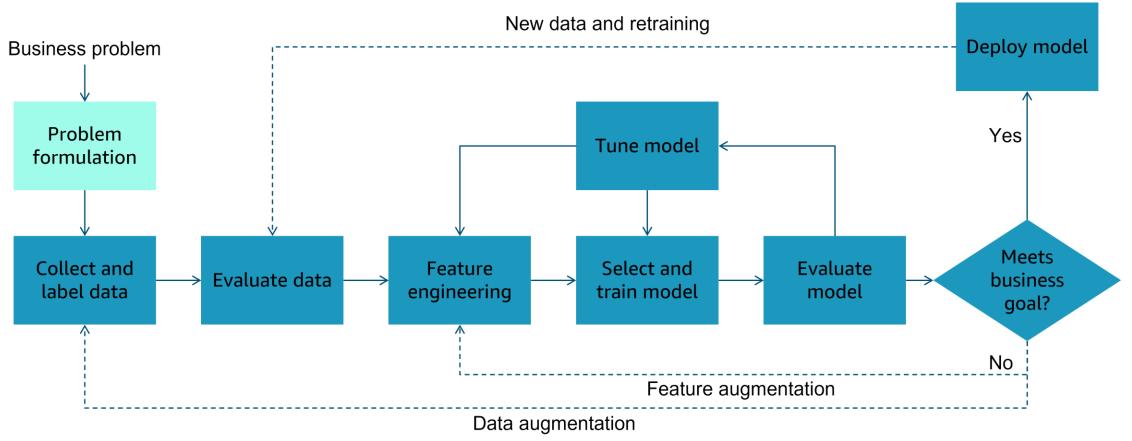
Key takeaways



- Research problems must be converted to an ML problem.
 - Why?
 - Can it be measured?
- What kind of ML problem is it?
 - $\circ\,$ Classification or regression?

Part 2 Collecting Data

Machine Learning Workflow



What Data Do You Need?

- How much data do you have, and where is it?
- Do you have access to that data?
- If multiple datasets, what solution can you use to bring all this data into one centralized repository?
- Data sources:
 - Private data
 - Commercial data
 - **Open-source data (**publicly available data)
 - Kaggle
 - Data.gov
 - UC Irvine Machine Learning Repository
 - World Health Organization
 - U.S. Census Bureau

Supervised ML: Labeled Data

ML problems need a lot of data - also called **instances (observations)** - where the target answer or prediction is **already known**.

Customer	Date of transaction	Vendor	Charge amount	Was this fraud?	Feature
ABC	10/5	Store 1	10.99	No	
DEF	10/5	Store 2	99.99	res	
GHI	10/5	Store 2	15.00	No	
JKL	10/6	Store 2	99.99	?	Target
MNO	10/6	Store 1	99.99	Yes	

Extract, Transform, Load (ETL)

The steps in an extract, transform, and load (ETL) process are defined as follows.

• Extract:

Pull the data from the sources to a single location.

• Transform:

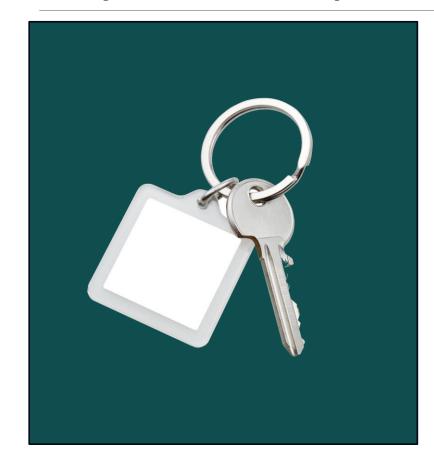
During extraction, the data might need to be modified, matching records might need to be combined, or other transformations might be necessary.

• Load:

Finally, the data is loaded into a repository.

Name	Country	Sex	dob
Richard Roe	UK	Male	18/2/1972
Paulo Santos	Male		11/2/1969
Mrs. Mary Major	Denver	F	37
Desai, Arnav	USA	М	2/22/1962

Key takeaways

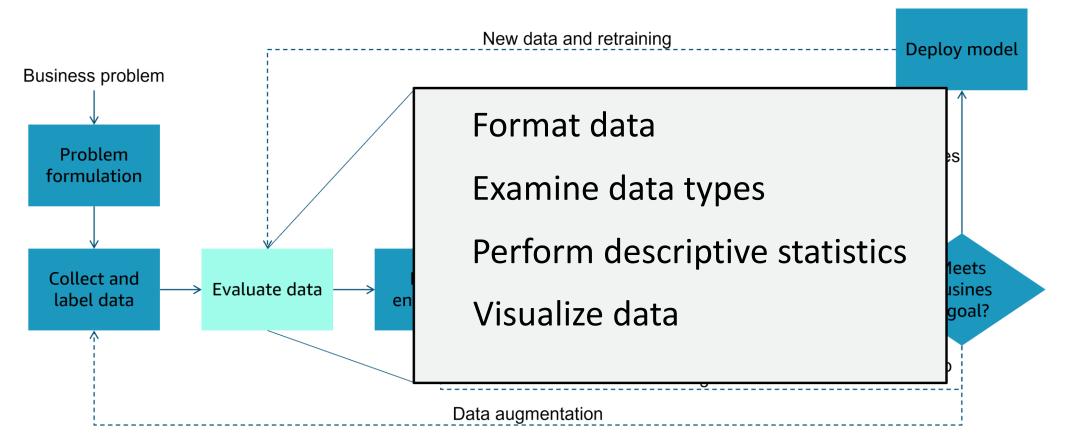


Data collection

- How much data do you have, and where is it?
- Do you have access to that data?
- ML problems need a lot of data
- Supervised ML needs labeled data
 - Features
 - Target
- Extract, transform, and load (ETL) is a common term for obtaining data for ML

Part 3: Evaluate Data & Pre-Processing

ML Pipeline: Evaluate Data



Understand Your Data

"Customer:ABC,DateOfT ransation:10/5,Vendor:S tore1,ChargeAmount:10 .99,WasThisFruad:No..."

Customer	Date of Transaction	Vendor	Charge Amount	Was This Fraud?
ABC	10/5	Store 1	10.99	No
DEF	10/5	Store 2	99.99	Yes
GHI	10/5	Store 2	15.00	No
JKL	10/6	Store 2	99.99	?
MNO	10/6	Store 1	99.99	Yes

Load Data

• Reformats data into tabular representation (DataFrame)

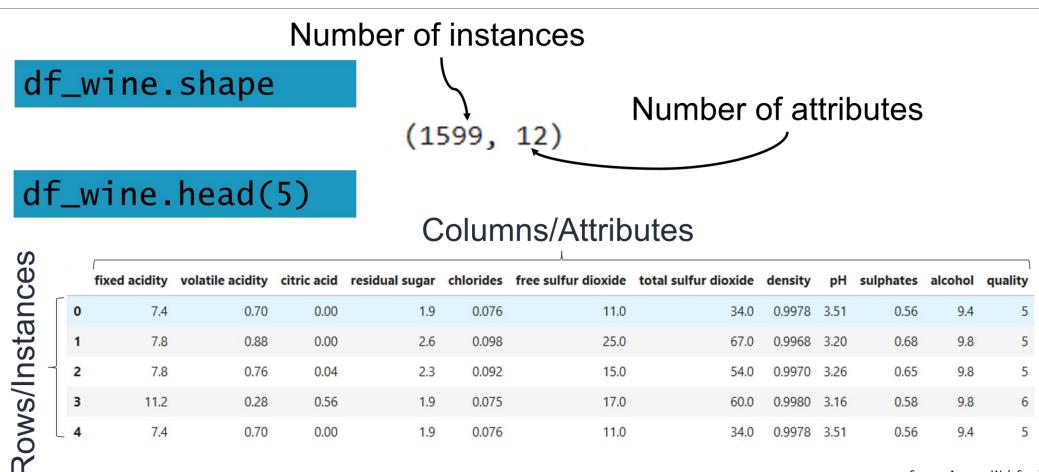
o Rows

o Columns

• Converts common formats like comma-separated values (csv), text file (txt), JavaScript Object Notation (JSON), Excel, and others

```
import pandas as pd
url = "https://somewhere.com/winequality-red.csv"
df_wine = pd.read_csv(url,';')
```


Load Data: Pandas DataFrame



Index and Column Names

df_wine.columns

Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol', 'quality'], dtype='object')

df_wine.index

RangeIndex(start=0, stop=1599, step=1)

Data Type

df_wine.dtypes()

<pre>quality fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol dtype: object</pre>	
dtype: object	

df_data['col'] = df_data['col'].astype('int')

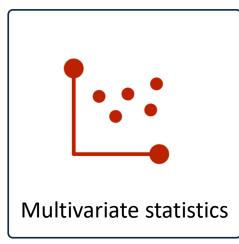
int64
float64

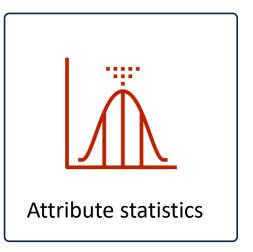
df_wine.info()

<class 'pandas.core.frame.dataframe'=""> Int64Index: 1597 entries, O to 1598</class>							
Data columns (total 12 c	olumns):						
quality	1597 non-null int64						
fixed acidity	1597 non-null float64						
volatile acidity	1597 non-null float64						
citric acid	1597 non-null float64						
residual sugar	1597 non-null float64						
chlorides	1597 non-null float64						
free sulfur dioxide	1597 non-null float64						
total sulfur dioxide	1597 non-null float64						
density	1597 non-null float64						
рН	1597 non-null float64						
sulphates	1597 non-null float64						
alcohol	1597 non-null float64						
dtypes: float64(11), int memory usage: 162.2 KB	64(1)						

Descriptive Statistics

Use descriptive statistics to gain insights into your data before you clean the data:





Statistical Characteristics

df_wine.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	рН	sulphates	alcohol	quality
count	1599.00	1599.00	1599.00	1599.00	1599.00	1599.00	1599.00	1599.00	1599.00	1599.00	1599.00
mean	8.32	0.53	0.27	2.54	0.09	15.87	46.47	3.31	0.66	10.42	5.64
std	1.74	0.18	0.19	1.41	0.05	10.46	32.90	0.15	0.17	1.07	0.81
min	4.60	0.12	0.00	0.90	0.01	1.00	6.00	2.74	0.33	8.40	3.00
25%	7.10	0.39	0.09	1.90	0.07	7.00	22.00	3.21	0.55	9.50	5.00
50%	7.90	0.52	0.26	2.20	0.08	14.00	38.00	3.31	0.62	10.20	6.00
75%	9.20	0.64	0.42	2.60	0.09	21.00	62.00	3.40	0.73	11.10	6.00
max	15.90	1.58	1.00	15.50	0.61	72.00	289.00	4.01	2.00	14.90	8.00

Categorical Statistics

Identify frequency of values and class imbalance

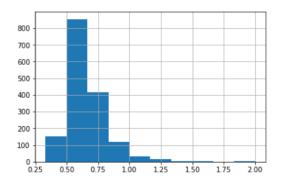
		buying	maint	doors	persons	lug_boot	safety	class
	0	vhigh	vhigh	2	2	small	low	unacc
df_car.head(5)	1	vhigh	vhigh	2	2	small	med	unacc
	2	vhigh	vhigh	2	2	small	high	unacc
	3	vhigh	vhigh	2	2	med	low	unacc
	4	vhigh	vhigh	2	2	med	med	unacc

df_car.describe()

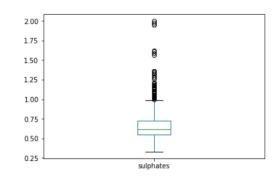
	buying	maint	doors	persons	lug_boot	safety	class
count	1728	1728	1728	1728	1728	1728	1728
unique	4	4	4	3	3	3	4
top	low	low	2	2	big	low	unacc
freq	432	432	432	576	576	576	1210

Plotting Attribute & Multivariate Statistics

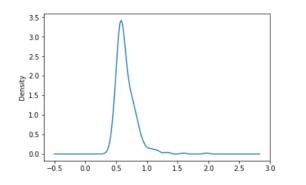
df_wine['sulphates'].hist(bins=

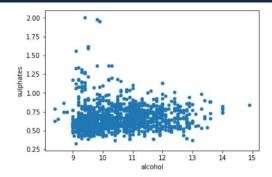


df_wine['sulphates'].plot.box()



df_wine['sulphates'].plot.kde()



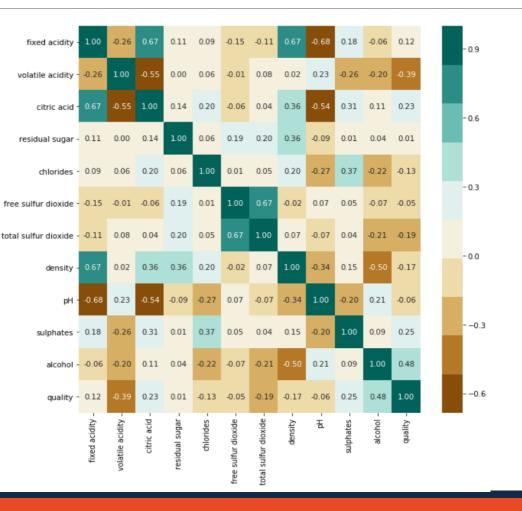


Correlation Matrix Heat Map

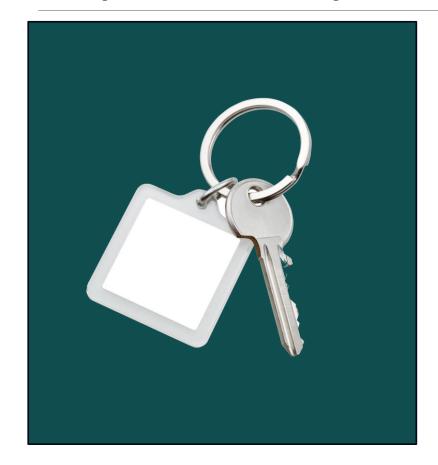
import seaborn as sns

correlations = df_wine.corr()
fig, ax = plt.subplots(figsize=(10, 10))
colormap = sns.color_palette("BrBG", 10)

ax.set_yticklabels(colum_names);
plt.show()



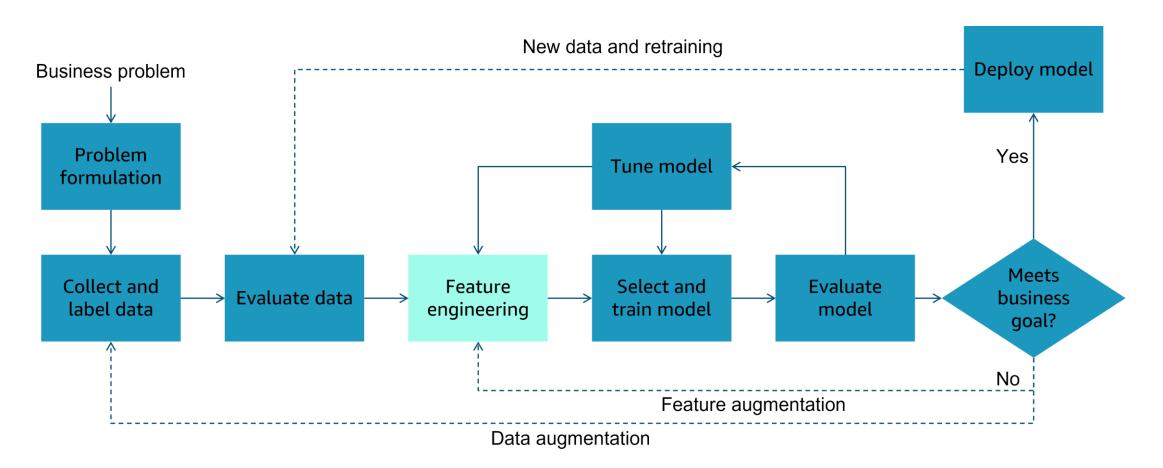
Key takeaways



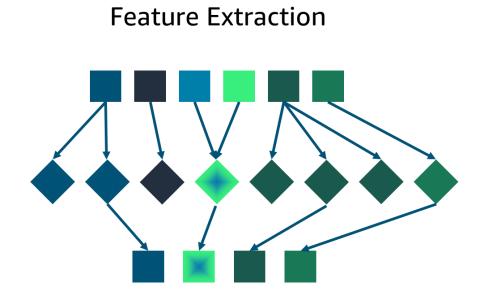
- The first step in evaluating data is to make sure that it's in the right format.
- Pandas is a popular Python library for working with data.
- Use descriptive statistics to learn about the dataset.
- Create visualizations with pandas to examine the dataset in more detail.

Part 4 Feature Engineering

ML Workflow: Feature Engineering



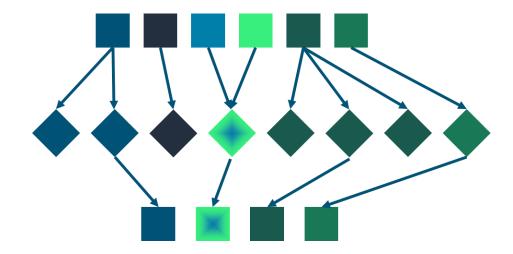
Feature Selection & Extraction



Feature Selection

To build up **valuable information** from raw data by **reformatting**, **combining**, and **transforming** primary features into new ones. To **prevent** either **redundancy** or **irrelevance** in the existing features, or to get a limited number of features to prevent **overfitting**.

Feature Extraction: Data Handling



- Wrong formats
- Invalid values
- Misspelling
- Duplicates
- Encode categories (text -> numeric)
- Consistency
- Remove outliers

- Reassign outliers
- Rescale
- Transformation
- Consistency
- Combine data
- Split data into multiple columns

Encoding Data

Categorical data is non-numeric data.

Categorical data must be converted (encoded) to a numeric scale.

Tools such as Scikit-Learn and Pandas can be used to encode your categorical data after you make sure that it is all uniform.

Maintenance Costs	Encoding
Low	1
Medium	2
High	3
Very High	4

Encoding Non-ordinal Data

If data is non-ordinal, the encoded values also must be non-ordinal.

Non-ordinal data might need to be broken into multiple categories.

•••	Color	
	Red	
•••	Blue	
	Green	
•••	Blue	
	Green	

•••	Red	Blue	Green
	1	0	0
•••	0	1	0
	0	0	1
•••	0	1	0
•••	0	0	1

Cleaning Data

Types of data to clean:

Туре	Example	Action
Variations in strings	Med. vs. Medium	Convert to standard text
Variations in scale	Number of doors vs. number of cars purchased	Normalize to a common scale
Columns with multiple data items	Safe high-maintenance	Parse into multiple columns
Missing data	Missing columns of data	Delete rows or impute data
Outliers	Various	

Finding Missing Data

- Missing data makes it difficult to interpret relationships
- Causes of missing data:
 - Undefined values
 - Data collection errors
 - Data cleaning errors
- Example pandas code to find missing data:



df.isnull().sum() #count missing values for each column
df.isnull().sum(axis=1) #count missing values for each row

Dropping Missing Values

Drop missing data with pandas

- dropna function to drop rows
 df.dropna()
- dropna function to drop columns with null values df.dropna (axis=1)
- dropna function to drop a subset df.dropna(subset=["buying"])

Imputing Missing Values

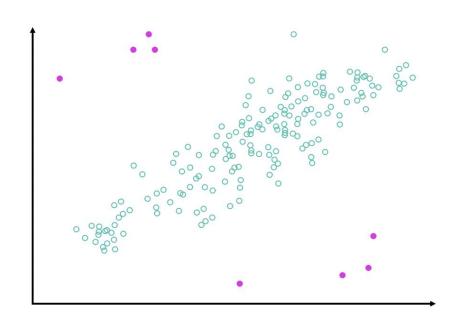
- First, determine why the data is missing
- Two ways to impute missing data:
 - $\,\circ\,$ Univariate: Adding data for a single row of missing data
 - Multivariate: Adding data for multiple rows of missing data

```
from sklearn.preprocessing import Imputer
import numpy as np
Arr = np.array([[5,3,2,2],[3,None,1,9],[5,2,7,None]])
imputer = Imputer(strategy='mean')
imp = imputer.fit(arr)
imputer.transform(arr)
```


Outliers

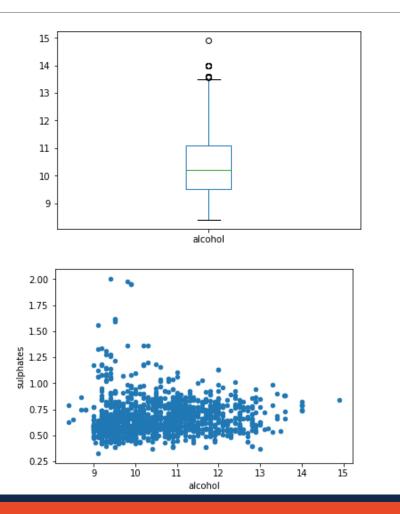
• Outliers can:

- Provide a broader picture of the data
- Make accurate predictions difficult
- Indicate the need for more columns
- Types of outliers
 - Univariate: Abnormal values for a single variable
 - Multivariate: Abnormal values for a combination of two or more variables



Finding Outliers

- Box plots show variation and distance from the mean
 - Example shows a box plot for the amount of alcohol in a collection of wines
- Scatter plots can also show outliers
 - A scatter plot shows the relationship between alcohol and sulphates in a collection of wines



Dealing with Outliers

Delete the outlier

Outlier is based on an artificial error.

Transform the outlier

Reduces the variation that the extreme outlier value causes and the outlier's influence on the dataset.

Impute a new value for the outlier

You might use the mean of the feature, for instance, and impute that value to replace the outlier value.

Feature Selection: Filter Methods

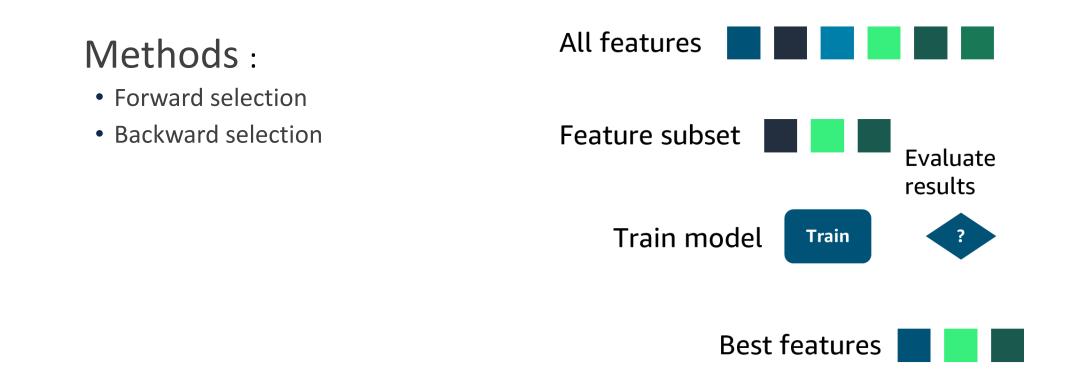
Measures:

- Pearson's correlation coefficient
- Linear discriminant analysis (LDA)
- Analysis of variance (ANOVA)
- Chi-square

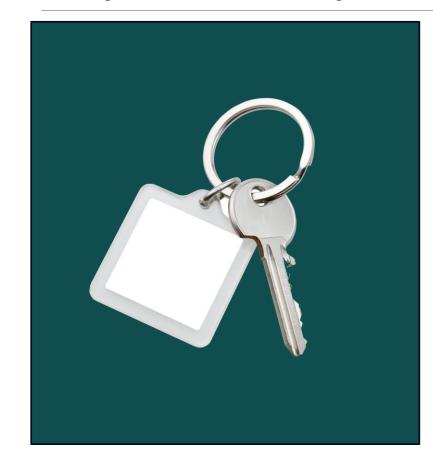
Statistics and correlation

Best features

Feature Selection: Wrapper



Key takeaways



- Feature engineering involves :
 - Selection
 - Extraction
- Pre-processing gives you better data
- Two categories for preprocessing:
 - Converting categorical data
 - Cleaning up dirty data
- Use encoding to convert categorical data
- Various types of dirty data:
 - Missing data
 - Outliers
- Develop a strategy for cleaning dirty data
 - Replace or delete rows with missing data
 - Delete, transform, or impute new values for outliers

Questions or Comments?

In-Class Activity: Group Discussion

- Select one person for debriefing discussion when back in the main room.
- Group members need to share their final project proposals via zoom
- Each member should briefly explain about your project plan (5-10min).
- Other members should give feedback after each presentation.
- Feedback can be questions, suggestions, etc.
- Each member should provide at least one comment for each round of talk.

Thank You!

School of Information Sciences