
Beyond the Textbook (Zelle 3e - Chapter 6)

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 1

https://www.ligent.net/

Python Functions

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 2

https://www.ligent.net/

Why Use Functions

The naïve structure for a program is to put all code into main() .

The better practice for larger programs is to break the code up into main() and an
appropriate number of sub-functions.

main() becomes the orchestrating function.

This approach leads to code that is:
Easier to write.

Easier to read.

Easier to test.

Easier to debug.

Easier to modify.

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 3

https://www.ligent.net/

Refactoring (and Factoring)

Refactoring is changing a program that has already been written to make it more

readable, testable, or maintainable without changing its function. See Fowler.

Factoring would be organizing your code as you write it so that it is easy to read, easy
to test, and easy to maintain.

Most people don't use the term factoring. Instead, they just call it program design.

Refactoring often calls for removing code from a function and creating a sub-function
(method extraction).

Sometimes, refactoring calls for the opposite (method inlining).

Refactoring principles are as important when you are writing the original code as they
are when you are improving it after the fact.

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 4

https://refactoring.com/
https://www.ligent.net/

Design Principles For Functions

The functions in well-designed programs should have high cohesion and low

coupling.

Functions that have high cohesion are all about the same thing. See Wikipedia article.

One sign of high cohesion is that the function is easy to name.

Names for Python functions should be verb-noun phrases like print_heading .

Functions that have low coupling know as little as possible about the inner workings
of other functions. See Wikipedia article.

Functions that have low coupling only know about the interface of the called function:
the name, the expected arguments, and the expected return values (if any).

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 5

https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://www.ligent.net/

Factoring Code Into Sub-Functions

4 Common Use Cases

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 6

https://www.ligent.net/

Use Case 1: Bags of Code

There is too much code to fit into the higher-level function.

Good function size is about a page or less.

In this use case, code is divided up into multiple functions that meet size
requirements.

See:
_01_bags_of_code_original.py

_02_bags_of_code_refactored.py

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 7

https://www.ligent.net/

Use Case 2: Reusable Parts (DRY)

There is common code that appears 2 or more times.

Good practice is to factor this code into a common function that can be called from
wherever the common code appears.

This saves authoring time, testing time, debugging time, and maintenance time.

Don't repeat yourself (DRY).

See:

_03_reusable_parts_original.py

_04_reusable_parts_refactored.py

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 8

https://www.ligent.net/

Use Case 3: Parameterized Tools (DRY)

There are multiple pieces of code that are not exactly alike.

But, they are sufficiently similar to be addressed by a function that takes parameters.

This saves authoring time, testing time, debugging time, and maintenance time.

Don't repeat yourself (DRY).

See:
_05_parameterized_tools_original.py

_06_parameterized_tools_refactored.py

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 9

https://www.ligent.net/

Use Case 4: Hiding Places For Assumptions

There are multiple pieces of code that do similar work.

Replacing them with function calls may not save any lines of code.

Yet, we do replace these code pieces with calls to a common function.

Our rationale is to isolate some assumption regarding how we solve the problem to
just one function.

This saves maintenance time should the assumption change in the future.

See:
_07_hiding_places_original.py

_08_hiding_places_refactored.py

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 10

https://www.ligent.net/

All Python Functions Return a Single Value

If there is no return statement, the None value is returned.

If the return statement returns one value, then that value is returned.

If the return statement appears to return more than one value, then a tuple is
created and the tuple is returned.

Note that this is not an excuse to design functions that lack cohesion. All values in the
returned tuple should be about the same thing.

See:

_09_use_function_returns_more_than_one_value.py

_10_create_function_returns_more_than_one_value.py

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 11

https://www.ligent.net/

Positional vs Keyword Parameters

With positional parameters, arguments in the calling code are matched up with formal
parameters in the called code by position.

Python also has keyword parameters. These are matched by name.

Positional parameters must be coded before keyword parameters.

Keyword parameters provide default values.

See:

_12_use_function_takes_keyword_parameter.py

_15_create_function_takes_keyword_parameter.py

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 12

https://www.ligent.net/

Resources

Refactoring home page. Refactoring. (n.d.). Retrieved September 11, 2022, from
https://refactoring.com/

Wikimedia Foundation. (2022, August 29). Cohesion (Computer Science). Wikipedia.
Retrieved September 11, 2022, from

https://en.wikipedia.org/wiki/Cohesion_(computer_science)

Wikimedia Foundation. (2022, May 6). Coupling (computer programming). Wikipedia.
Retrieved September 11, 2022, from

https://en.wikipedia.org/wiki/Coupling_(computer_programming)

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 13

https://refactoring.com/
https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://www.ligent.net/

Last Revised 2022-09-11

Beyond the Textbook (Zelle 3e - Chapter 6) | 2022 Ligent, LLC 14

https://www.ligent.net/

