
Beyond the Textbook (Zelle 3e - Chapter 7)

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 1

https://www.ligent.net/

Decision Structures

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 2

https://www.ligent.net/

Review Simple if
See: decisions_01_simple.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 3

https://www.ligent.net/

Chaining Comparison Operators

In the proper circumstances, chaining multiple comparison operators can lead to more

readable code.

See: decisions_02_chaining_comparison_operators.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 4

https://www.ligent.net/

Truth Value Testing

All Python variables may be tested for truthiness regardless of their type.

Empty and zero values evaluate to False .

Non-empty and non-zero values evaluate to True .

Some Python programmers believe that this leads to more readable code.

See Tutorial Article.

See: decisions_03_truth_value_testing.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 5

https://www.geeksforgeeks.org/truthy-vs-falsy-values-in-python/
https://www.ligent.net/

Review Two-Way if
See: decisions_05_two_way.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 6

https://www.ligent.net/

Review Multi-Way if
When constructing a multi-way if that uses inequalities, you must test conditions
in order.

Ascending order is preferred.

See: decisions_10_multi_way.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 7

https://www.ligent.net/

Extended Multi-Way if
When constructing an extended multi-way if that uses inequalities, you must test
conditions in order.

Ascending order is preferred.

See: decisions_15_multi_way_extended.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 8

https://www.ligent.net/

Using Multi-Way if For Lookups

Inline lookups can be coded with a multi-way if .

Refactoring the lookup into a function often leads to more readable code.

When we get to Zelle 3e Chapter 11, we will learn how to do lookups using a Python

dictionary .

At this point in the course, we are learning how to do this without the dictionary .

See:

decisions_20_lookup.py

decisions_25_lookup_in_function.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 9

https://www.ligent.net/

Using Nested ifs to Implement Complex Choices

Nested ifs can be used to implement complex choices.

Any code block can contain a simple, two-way, or multi-way if .

Nesting ifs two levels deep is most common.

Nesting ifs three levels deep is recommended only if it results in readable code.

Nesting ifs more than three-levels deep is generally considered a bad practice.

Refactoring a nested if into a function often leads to more readable code.

See:

decisions_30_nested_inline.py

decisions_35_nested_in_function.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 10

https://www.ligent.net/

Using try / except Blocks

try / except blocks allow recovery from anticipated program exceptions.

Otherwise, exceptions cause a stack trace to print on the console and execution

stops.

The try block contains the code that might raise an exception.

except blocks contain code that detects exceptions and handles them.

The finally block allows for some code to run regardless of whether an exception

was raised.

See:

decisions_40_try.py

decisions_43_try_with_called_code.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 11

https://www.ligent.net/

Using raise to Signal an Error Condition

We can raise exceptions in our own code as a way of signalling error conditions.

This architecture allows called code to detect errors and calling code to handle them.

Exceptions are implemented with Python classes.

When raising exceptions, we often re-use the builtin Python exception classes. See

Python Documentation.

It is possible to create our own exception classes by creating a custom Python

classes. See tutorial article.

See decisions_45_raise.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 12

https://docs.python.org/3/library/exceptions.html
https://www.geeksforgeeks.org/user-defined-exceptions-python-examples/
https://www.ligent.net/

Finding the Lowest (Highest, Longest, Shortest, Etc.)

Finding the lowest (highest, etc.) value in a list is easily done with the builtin min
and max functions.

Finding the lowest (highest, etc) value in a file of entries is harder and requires that
you follow a popular design pattern.

This design pattern requires that the programmer know how to express very high and

low values. Here are some references on how that is done for:
int

float

See decisions_50_find_lowest.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 13

https://www.geeksforgeeks.org/sys-maxint-in-python/
https://stackoverflow.com/questions/1835787/what-is-the-range-of-values-a-float-can-have-in-python
https://www.ligent.net/

Using ifs For Multi-Faceted Validation

Multi-faceted validation can be implemented using a series of if statements.

In this design pattern, we usually begin by assuming the the input is valid.

Then, each facet is tested in turn.

A failure of any one test, makes the input invalid.

See:

decisions_70_using_ifs_for_validation.py

decisions_75_validation_using_function.py

decisions_80_validation_using_function_and_messages.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 14

https://www.ligent.net/

Extra Python Features (Syntactic Sugar)

See https://en.wikipedia.org/wiki/Syntactic_sugar

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 15

https://en.wikipedia.org/wiki/Syntactic_sugar
https://www.ligent.net/

Structural Pattern Matching

This is a switch statement for Python. See Wikipedia article

New in Python 3.10.

We are covering it here in its simplest form: a substitute for the multi-way if .

It also introduces a pattern matching mechanism that is potentially much more

powerful than the multi-way if . See tutorial in Python documentation.

See:

decisions_90_lookup_using_structural_pattern_matching.py

decisions_92_lookup_in_function_using_structural_pattern_matching.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 16

https://en.wikipedia.org/wiki/Switch_statement
https://peps.python.org/pep-0636/
https://www.ligent.net/

Easier Message Formatting With Ternary if
Sometimes we want to format an output message that is slightly different depending

upon data values.

A classic example is when we want the message to include plural or singluar terms

based upon data values.

This is possible using the two-way if .

But, it may be easier to code using the ternary if .

See:

decisions_94_formatting_without_ternary_if.py

decisions_96_formatting_with_ternary_if.py

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 17

https://www.ligent.net/

Last Revised 2022-09-18

Beyond the Textbook (Zelle 3e - Chapter 7) | 2022 Ligent, LLC 18

https://www.ligent.net/

