
Page 1 of 10

Zelle 3e Chapter 7 Coding Assignment

General Instructions
My expectations for your work on coding assignment exercises will grow as we progress
through the course. In addition to applying any new programming techniques that have
been covered in the current chapter, I will be expecting you to follow all of the good
programming practices that we have adopted in the preceding weeks. Here is a quick
summary of good practices that we have covered so far:

• Include a Python Docstring that describes the intent of the program.
• Place your highest-level code in a function named main.
• Include a final line of code in the program that executes the main function.
• Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor.

For example, place two blank lines between the code making up a function and
the code surrounding that function.

• Choose names for your variables that are properly descriptive.
• Define CONSTANT_VALUES and use them in place of magic numbers.
• Always use f-strings for string interpolation and number formatting.
• When processing items from Python lists and tuples, unpack the values into

variables with meaningful variable names to avoid using indexed expressions in
your code.

• Close all files before the conclusion of the program.
• Remember that your program should behave reasonably when it is not given any

input. This might be the result of the user pressing enter at a console prompt.
Or, it might be the result of the user providing a an input file that is empty.

• Model your solution after the code that I demonstrate in the tutorial videos.
• Make sure that your test input/output matches the sample provided.
• Create a sub-directory named data within your PyCharm project to hold data

files.
• Remember to submit all data files with your PyCharm project – including the files

that were provided as starter files to this assignment.
• All functions that are not main() should have descriptive, action-oriented names.
• All functions should be of reasonable size.
• All functions should have high cohesion, and low coupling.
• Remember to test your program thoroughly before submitting your work.
• Your code must pass all relevant test cases. Make sure that it passes tests at the

boundaries created by if, else, and elif conditions in your program (boundary
value tests).

Page 2 of 10

No Tutorial Videos for This Chapter
There are no tutorial videos for this coding assignment. Instead, each of the exercises is
based upon one of the programs from the supplemental demonstration project. The
directions for each exercise identify which of the supplemental demonstration programs
you should consult when working on that exercise.

Please be aware that the supplemental demonstration programs have changed since the
lecture was recorded. Be sure to download the code for the supplemental
demonstration project and examine the new code before coding your exercise solution.

Page 3 of 10

Exercise 1 (Regular)
A foot race has been held for a large group of children. In keeping with modern thinking
regarding children’s competitions, every participant will receive a ribbon. The following
table indicates which ribbon the participant should receive based up the place number
in which they finished.

Place Ribbon
1 Blue
2 Red
3 Orange
4 Gold
5 Green
6 Purple

>6 White

Create a program named distribute_race_ribbons.py. This program will be used by race
organizers when distributing the ribbons. Each time the program is run, it will prompt
the user for an integer representing the place in which the child finished. Then, it will
print the color of the ribbon that the child has earned.

Design your program such that the code that looks up the ribbon earned is in a separate
function named determine_ribbon. For this program, you can trust the user to enter an
integer. Nevertheless, you need to check for inputs that are proper integers but do not
represent proper finishing places. In this case, the function should return an error
message instead of the description of the race award.

When creating this program, you may use the sample program
decisions_25_lookup_in_function as a model.

The following is an example of expected input/output on the console from a successful
user interaction:

Please enter place finished (1, 2, 3...): 5

Ribbon Awarded: Green

The following is an example of expected input/output on the console from a user
interaction the results in an error:

Please enter place finished (1, 2, 3...): -9

Ribbon Awarded: ERROR - Place must be greater than zero.

Page 4 of 10

Exercise 2 (Regular)
A state motor vehicle agency needs to calculate annual registration fees for vehicles
registered in the state. Fees are based upon the vehicle type (car or truck) and the
vehicle weight.

Create a python program named calculate_registration_fees.py.

Within that program, create a Python function that will be used in the vehicle
registration system. The function should be named determine_annual_registration_fee.
It should accept two input parameters: vehicle-type and weight. It should return the
annual fee as a float value. The annual fee will be based upon the following table:

Vehicle Type Weight Annual Fee
Car < 3000 125.00
Car >= 3000 200.00

Truck < 4000 250.00
Truck >= 4000 350.00

In normal circumstances, any calls made to the determine_annual_registration_fee
function should be for a car or a truck. Nevertheless, the code should check the vehicle-
type for unexpected values. If an unexpected value is detected, the code should raise a
ValueError with a descriptive message.

When creating your program, employ a rudimentary automated testing approach by
placing your test cases in the main function. For each test case that passes, the program
should print the Boolean value True. For each test case that fails, the program should
print the Boolean value False. When designing your test cases, remember to consider
the need for boundary value testing.

When creating this program, you may use the sample program
decisions_35_nested_in_function as a model.

The following is an example of expected output on the console from a test with normal
test cases (no unexpected vehicle types):

True
True
True
True
True
True
True
True

Page 5 of 10

The following is an example of expected output on the console from a test case with an
unexpected vehicle-type:

Traceback (most recent call last):

<- Several lines omitted because of space considerations ->

ValueError: "motorcycle" is not a recognized vehicle-type.

Page 6 of 10

Exercise 3 (Regular)
Create a program named detect_input_error.py. This program will be based upon the
sample program decisions_40_try.py. Feel free to copy the sample program to provide a
starting point for your code.

Your program should be different from the sample program in the following respects:

1. Instead of only prompting the user for 1 integer, your program should use a
for/in loop to prompt the user for an integer 5 times.

2. Your program should print polite messages to the user at the start of the

program so that the user knows how many integers they will be prompted for
and what kind of output to expect.

Make sure that your program catches any bad input, prints the appropriate error
message, and makes an immediate graceful exit.

The following is an example of expected input/output on the console from a test in
which proper integer values are entered by the user:

This program prompts you for 5 integers.
Valid integer inputs are echoed back to the user.
Invalid inputs cause an error message and a graceful exit.

Please enter an integer: 11
You have entered the integer 11.

Please enter an integer: 22
You have entered the integer 22.

Please enter an integer: 33
You have entered the integer 33.

Please enter an integer: 44
You have entered the integer 44.

Please enter an integer: 55
You have entered the integer 55.

Thanks for playing.

Page 7 of 10

The following is an example of expected input/output on the console from a test in
which an improper value is entered by the user:

This program prompts you for 5 integers.
Valid integer inputs are echoed back to the user.
Invalid inputs cause an error message and a graceful exit.

Please enter an integer: 111
You have entered the integer 111.

Please enter an integer: 222
You have entered the integer 222.

Please enter an integer: hi mom

An integer was expected. You entered "hi mom".
The program is ending. Please run it again with proper input.

Page 8 of 10

Exercise 4 (Regular)
Create a program named find_highest_from_file.py. This program will be based upon
the sample program decisions_50_find_lowest.py. Feel free to copy the sample
program to provide a starting point for your code.

Your program will be different from the sample program in the following respects:

1. Your program will read integer values from a file rather than simulate user input
with a list. The file is provided as one of the starter files for this coding
assignment. It is named integer_values.txt. There is another test data file to be
used with your program. This file is named empty_file.txt. Your program must
process both files successfully. Remember to place these files in a sub-directory
of your PyCharm project directory named data.

The test data file contains one integer value per line. The integer values are
between -100,000 and 100,000.

2. You cannot use the len() function to determine how many values are in the file.
You will need to count the values as your read the lines.

3. You cannot use the starting assumption that the first value in the file is the

highest value because the file may be empty. To adapt, use an old programmer
trick by assigning an impossibly low initial value to the highest_value_so_far
variable (try -999999).

The following is an example of expected input/output on the console from a test using
the integer_values.txt input file:

Please enter the name of the file containing integer values:
integer_values.txt

The input file contained 1000 entries.
The highest value was 99975.

The following is an example of expected input/output on the console from a test using
the empty_file.txt input file:

Please enter the name of the file containing integer values:
empty_file.txt

The input file was empty. No values could be analyzed.

Page 9 of 10

Exercise 5 (Challenge)
Create a program named check_new_panamax_limits.py. This program will be based
upon the sample program decisions_72_validation_using_function_and_messages.py.
Feel free to copy the sample program to provide a starting point for your code.

Your program will be different from the sample program in the following respects:

1. Your program will evaluate candidate vessels that wish to transit the Panama
Canal using the General characteristics New Panamax limits as shown in the
Wikipedia article at https://en.wikipedia.org/wiki/Panamax

2. Your program should allow for floating point values to be entered for each of the

characteristics.

The following is an example of expected input/output on the console from a test using
all valid input values:

This program checks candidate vessels for compliance with the new
Panamax limits.
Please enter the tonnage of the vessel in DWT: 90000
Please enter the length of the vessel in feet: 801
Please enter the beam of the vessel in feet: 85
Please enter the height of the vessel in feet: 125
Please enter the draft of the vessel in feet: 40
Please enter the capacity of the vessel in TEU: 8000

This vessel is eligible to transit the Panama Canal.

The following is an example of expected input/output on the console from a test using
all invalid input values:

This program checks candidate vessels for compliance with the new
Panamax limits.
Please enter the tonnage of the vessel in DWT: 120001
Please enter the length of the vessel in feet: 1202
Please enter the beam of the vessel in feet: 169
Please enter the height of the vessel in feet: 191
Please enter the draft of the vessel in feet: 51
Please enter the capacity of the vessel in TEU: 14001

This vessel is NOT ELIGIBLE to transit the Panama Canal for the
following reasons:
Tonnage must not be greater than 120,000 DWT.
Length must not be greater than 1,201 feet.
Beam must not be greater than 168 feet.

Page 10 of 10

Height must not be greater than 190 feet.
Draft must not be greater than 50 feet.
Capacity must not be greater than 14,000 TEU.

Tools
Use PyCharm to create and test all Python programs.

Submission Method
Follow the process that I demonstrated in the tutorial video on submitting your work.
This involves:

• Locating the properly named directory associated with your project in the file
system.

• Compressing that directory into a single .ZIP file using a utility program.
• Submitting the properly named zip file to the submission activity for this

assignment.

File and Directory Naming
Please name your Python program files as instructed in each exercise. Please use the
following naming scheme for naming your PyCharm project:

 surname_givenname_exercises_zelle_3e_chapter_07

If this were my own project, I would name my PyCharm project as follows:

 trainor_kevin_exercises_zelle_3e_chapter_07

Use a zip utility to create one zip file that contain the PyCharm project directory.
The zip file should be named according to the following scheme:

 surname_givenname_exercises_zelle_3e_chapter_07.zip

If this were my own project, I would name the zip file as follows:

 trainor_kevin_exercises_zelle_3e_chapter_07.zip

Due By
Please submit this assignment by the date and time shown in the Weekly Schedule.

Last Revised
2022-06-02

