
Page 1 of 24

Severance Chapter 14 Coding Assignment

General Instructions
My expectations for your work on coding assignment exercises will grow as we progress
through the course. In addition to applying any new programming techniques that have
been covered in the current chapter, I will be expecting you to follow all of the good
programming practices that we have adopted in the preceding weeks. Here is a quick
summary of good practices that we have covered so far:

• Include a Python Docstring that describes the intent of the program.
• Place your highest-level code in a function named main.
• Include a final line of code in the program that executes the main function.
• Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor.

For example, place two blank lines between the code making up a function and
the code surrounding that function.

• Choose names for your variables that are properly descriptive.
• Define CONSTANT_VALUES and use them in place of magic numbers.
• Always use f-strings for string interpolation and number formatting.
• When processing items from Python lists and tuples, unpack the values into

variables with meaningful variable names to avoid using indexed expressions in
your code.

• Close all files before the conclusion of the program.
• Remember that your program should behave reasonably when it is not given any

input. This might be the result of the user pressing enter at a console prompt.
Or, it might be the result of the user providing a an input file that is empty.

• Model your solution after the code that I demonstrate in the tutorial videos.
• Make sure that your test input/output matches the sample provided.
• Create a sub-directory named data within your PyCharm project to hold data

files.
• Remember to submit all data files with your PyCharm project – including the files

that were provided as starter files to this assignment.
• All functions that are not main() should have descriptive, action-oriented names.
• All functions should be of reasonable size.
• All functions should have high cohesion, and low coupling.
• Remember to test your program thoroughly before submitting your work.
• Your code must pass all relevant test cases. Make sure that it passes tests at the

boundaries created by if, else, and elif conditions in your program (boundary
value tests).

• Use of the break statement is allowed but not encouraged.
• Use of the continue statement is forbidden.
• Regular expression patterns should be expressed as Python raw strings
• Your finished code must be refactored to meet all good program design practices

covered in this course.

Page 2 of 24

Exercise 1 (Regular)
Create a program named my_land_mammals.py. It should be modeled after the
program that I demonstrated in the tutorial (my_states.py). Your program should be
different in the following respects:

1. Your program will implement the LandMammal class that holds data facts
regarding the world’s largest land mammals.

2. The LandMammal class should implement the following instance variables:

a. name (str)
b. minimum_mass_in_pounds (int)
c. maximum_mass_in_pounds (int)

3. You will also need to implement the following method:

a. calculate_range_of_mass_in_pounds() returns the maximum value minus

the minimum value as an int.

4. Unit testing code should be placed in the main() function and should follow the
approach demonstrated in the tutorial.

When running the unit tests, you should expect the following output on your console:

Unit testing output follows...

Test Case #1: Test constructor
Passed
Passed
Passed

Test Case #2: Test calculate_range_of_mass_in_pounds
Passed

Page 3 of 24

Exercise 2 (Regular)
Create a program named create_land_mammal_mass_reports.py. It should be modeled
after the program that I demonstrated in the tutorial (create_state_area_reports.py).
Your program should be different in the following respects:

1. Your program will create a report of LandMammal data facts in two different
sort orders:

a. By Land Mammal Name
b. By Descending Range of Mass in Pounds

2. Your program should give expected results when run with the following input

files provided as starter files:

a. empty_file.txt
b. land_mammals.txt

3. The importing of the my_land_mammals.py module into your program should

NOT cause the unit test code in that program to be executed.

When running a test with the empty input file, you should expect the following
input/output on your console:

Please enter input file name: empty_file.txt

 BY LAND MAMMAL NAME

Land Mammal Minimum Mass Maximum Mass Range of Mass
Name in Pounds in Pounds in Pounds

 BY DESCENDING RANGE OF MASS IN POUNDS

Land Mammal Minimum Mass Maximum Mass Range of Mass
Name in Pounds in Pounds in Pounds

Page 4 of 24

When running a test with the populated input file, you should expect the following
input/output on your console:

Please enter input file name: land_mammals.txt

 BY LAND MAMMAL NAME

Land Mammal Minimum Mass Maximum Mass Range of Mass
Name in Pounds in Pounds in Pounds
African elephant 10,000 24,000 14,000
American bison 700 2,200 1,500
Asian elephant 8,000 17,640 9,640
Black rhinoceros 1,500 4,000 2,500
Cape buffalo 1,100 2,200 1,100
Gaur 1,000 3,000 2,000
Giraffe 1,544 4,255 2,711
Hippopotamus 2,500 8,820 6,320
Water buffalo 660 2,200 1,540
White rhinoceros 3,000 9,920 6,920

 BY DESCENDING RANGE OF MASS IN POUNDS

Land Mammal Minimum Mass Maximum Mass Range of Mass
Name in Pounds in Pounds in Pounds
African elephant 10,000 24,000 14,000
Asian elephant 8,000 17,640 9,640
White rhinoceros 3,000 9,920 6,920
Hippopotamus 2,500 8,820 6,320
Giraffe 1,544 4,255 2,711
Black rhinoceros 1,500 4,000 2,500
Gaur 1,000 3,000 2,000
Water buffalo 660 2,200 1,540
American bison 700 2,200 1,500
Cape buffalo 1,100 2,200 1,100

Page 5 of 24

Exercise 3 (Regular)
Create a program named my_vehicles.py. It should be a new version of the program
that I demonstrated in the tutorial (my_vehicles_starter.py). Start by copying the
program from the tutorial into your project and renaming it.

Your program should be different in the following respects:

1. In addition to the Car and Truck subclasses, your program will also implement
the Motorcycle subclass.

2. The Motorcycle subclass will provide the following distinguishing instance

variable:

a. displacement_in_ccs (int)

3. The Motorcycle subclass will provide an implementation for the following
method:

a. determine_annual_registration_fee() returns float.

If displacement_in_ccs is less than 1,000, then the annual fee is 75.00.
Otherwise, the annual fee is 150.00.

4. Unit testing code should be placed in the main() function and should follow the
approach demonstrated in the tutorial.

When running the unit tests, you should expect the following output on your console:

Unit testing output follows...

Test Case #1: Test Vehicle constructor
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Page 6 of 24

Test Case #2: Test Car constructor
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Test Case #3: Test Car determine_annual_registration_fee, fuel_type =
Electric
Passed

Test Case #4: Test Car determine_annual_registration_fee, fuel_type =
Hybrid
Passed

Test Case #5: Test Car determine_annual_registration_fee, fuel_type =
Fossil
Passed

Test Case #6: Test Car determine_annual_registration_fee, fuel_type =
Plutonium
Passed

Test Case #7: Test Truck constructor
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Test Case #8: Test Truck determine_annual_registration_fee, gross_weight
= 14000
Passed

Page 7 of 24

Test Case #9: Test Truck determine_annual_registration_fee, gross_weight
= 14001
Passed

Test Case #10: Test Motorcycle constructor
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Test Case #11: Test Motorcycle determine_annual_registration_fee,
displacement_in_ccs = 999
Passed

Test Case #12: Test Motorcycle determine_annual_registration_fee,
displacement_in_ccs = 1000
Passed

Page 8 of 24

Exercise 4 (Regular)
Create a program named create_vehicle_registration_invoices.py. It should be a new
version of the program that I demonstrated in the tutorial
(create_vehicle_registration_invoices_starter.py). Start by copying the program from
the tutorial into your project and renaming it.

Your program should be different in the following respects:

1. In addition to creating registration invoices for instances of the Car and Truck
subclasses, your program should also create registration invoices for the
Motorcycle class.

2. Your program should give expected results when run with the following input

files provided as starter files:

a. empty_file.txt
b. car_truck_and_motorcycle_records.txt

3. The importing of the my_vehicles.py module into your program should NOT

cause the unit test code in that program to be executed.

When running a test with the empty input file, you should expect the following
input/output on your console:

Please enter the input filename: empty_file.txt

0 invoices have been printed.

Page 9 of 24

When running a test with the populated input file, you should expect the following
input/output on your console:

Please enter the input filename: car_truck_and_motorcycle_records.txt

CAR REGISTRATION INVOICE

AMOUNT DUE: 100.00

Bella Baker
100 West End Street
Champaign, IL 62609

Make: Tesla
Model: Model 3
Year: 2022
Color: Blue
VIN: CAR4489679911
Fuel: Electric

CAR REGISTRATION INVOICE

AMOUNT DUE: 300.00

John Howard
600 Pleasant Circle
Apt A
Champaign, IL 60577

Make: Toyota
Model: Camry
Year: 2021
Color: White
VIN: CAR1074521368
Fuel: Fossil

CAR REGISTRATION INVOICE

AMOUNT DUE: 300.00

Page 10 of 24

Faith Langdon
335 River Circle
Champaign, IL 61256

Make: Toyota
Model: Corolla
Year: 2021
Color: Red
VIN: CAR2927528306
Fuel: Fossil

TRUCK REGISTRATION INVOICE

AMOUNT DUE: 400.00

Joshua Lewis
801 River Court
Apt B
Champaign, IL 62030

Make: Nissan
Model: Titan XD
Year: 2021
Color: Black
VIN: TRK6602773660
Gross WT: 11,000

TRUCK REGISTRATION INVOICE

AMOUNT DUE: 400.00

Sebastian Lewis
100 Potter Way
Champaign, IL 60143

Make: Ford
Model: Super Duty F-350
Year: 2021
Color: Grey
VIN: TRK3575913453
Gross WT: 12,000

Page 11 of 24

CAR REGISTRATION INVOICE

AMOUNT DUE: 300.00

Carol Metcalfe
1000 Pleasant Court
Apt C
Champaign, IL 60883

Make: Nissan
Model: Altima
Year: 2021
Color: Grey
VIN: CAR8804836953
Fuel: Fossil

TRUCK REGISTRATION INVOICE

AMOUNT DUE: 400.00

Michael North
1000 Main Way
Apt C
Champaign, IL 62220

Make: Ford
Model: Super Duty F-350
Year: 2021
Color: White
VIN: TRK5168323404
Gross WT: 12,000

MOTORCYCLE REGISTRATION INVOICE

AMOUNT DUE: 150.00

Dylan Paige
800 Center Blvd
Unit D
Champaign, IL 60214

Page 12 of 24

Make: BMW
Model: R1250 GS
Year: 2021
Color: White
VIN: MCY8266162579
Displace: 1254

<--- A Large Number of Invoices Have Been Omitted to Save Space --->

MOTORCYCLE REGISTRATION INVOICE

AMOUNT DUE: 75.00

Dominic Mackay
750 Center Blvd
Waukegan, IL 62374

Make: Royal Enfield
Model: Meteor 350
Year: 2021
Color: Grey
VIN: MCY5807211506
Displace: 349

CAR REGISTRATION INVOICE

AMOUNT DUE: 300.00

Tracey Peake
555 High Court
Waukegan, IL 61926

Make: Nissan
Model: Altima
Year: 2021
Color: White
VIN: CAR2412599457
Fuel: Fossil

Page 13 of 24

CAR REGISTRATION INVOICE

AMOUNT DUE: 300.00

Wanda Underwood
702 Center Way
Waukegan, IL 61636

Make: Honda
Model: Civic
Year: 2022
Color: White
VIN: CAR2407296694
Fuel: Fossil

86 invoices have been printed.

Page 14 of 24

Exercise 5 (Challenge)
Please note that there are two parts to this exercise. Be sure to complete both parts.

Create a program named my_vehicles_challenge.py. It should be a new version of the
program created in Exercise 3 (my_vehicles.py). Start by copying the program and
renaming it.

Your program should be different in the following respects:

1. In addition to the Car, Truck, and Motorcycle subclasses, your program will also
implement the Snowmobile subclass.

2. The Snowmobile subclass will NOT provide a distinguishing instance variable.

3. The Snowmobile subclass will provide an implementation for the following

method:

b. determine_annual_registration_fee() returns float.

The annual fee is always 45.00.

4. Unit testing code should be placed in the main() function and should follow the
approach demonstrated in the tutorial.

When running the unit tests, you should expect the following output on your console:

Unit testing output follows...

Test Case #1: Test Vehicle constructor
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Test Case #2: Test Car constructor
Passed
Passed

Page 15 of 24

Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Test Case #3: Test Car determine_annual_registration_fee, fuel_type =
Electric
Passed

Test Case #4: Test Car determine_annual_registration_fee, fuel_type =
Hybrid
Passed

Test Case #5: Test Car determine_annual_registration_fee, fuel_type =
Fossil
Passed

Test Case #6: Test Car determine_annual_registration_fee, fuel_type =
Plutonium
Passed

Test Case #7: Test Truck constructor
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Test Case #8: Test Truck determine_annual_registration_fee, gross_weight
= 14000
Passed

Test Case #9: Test Truck determine_annual_registration_fee, gross_weight
= 14001

Page 16 of 24

Passed

Test Case #10: Test Motorcycle constructor
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Test Case #11: Test Motorcycle determine_annual_registration_fee,
displacement_in_ccs = 999
Passed

Test Case #12: Test Motorcycle determine_annual_registration_fee,
displacement_in_ccs = 1000
Passed

Test Case #13: Test Snowmobile constructor
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Test Case #14: Test Snowmobile determine_annual_registration_fee
Passed

Page 17 of 24

Create a program named create_vehicle_registration_invoices_challenge.py. It should
be a new version of the program created in Exercise 4
(create_vehicle_registration_invoices.py). Start by copying the program and renaming
it.

Your program should be different in the following respects:

1. In addition to creating registration invoices for instances of the Car, Truck, and
Motorcycle subclasses, your program should also create registration invoices for
the Snowmobile class.

2. Your program should give expected results when run with the following input

files provided as starter files:

a. empty_file.txt
b. car_truck_motorcycle_and_snowmobile_records.txt

3. The importing of the my_vehicles.py module into your program should NOT

cause the unit test code in that program to be executed.

When running a test with the empty input file, you should expect the following
input/output on your console:

Please enter the input filename: empty_file.txt

0 invoices have been printed.

Page 18 of 24

When running a test with the populated input file, you should expect the following
input/output on your console:

Please enter the input filename:
car_truck_motorcycle_and_snowmobile_records.txt

CAR REGISTRATION INVOICE

AMOUNT DUE: 100.00

Bella Baker
100 West End Street
Champaign, IL 62609

Make: Tesla
Model: Model 3
Year: 2022
Color: Blue
VIN: CAR4489679911
Fuel: Electric

CAR REGISTRATION INVOICE

AMOUNT DUE: 300.00

John Howard
600 Pleasant Circle
Apt A
Champaign, IL 60577

Make: Toyota
Model: Camry
Year: 2021
Color: White
VIN: CAR1074521368
Fuel: Fossil

SNOWMOBILE REGISTRATION INVOICE

Page 19 of 24

AMOUNT DUE: 45.00

Colin King
800 Brook Circle
Unit C
Champaign, IL 61461

Make: Yamaha
Model: Sidewinder L-TX GT
Year: 2022
Color: White
VIN: SNW2387865728

CAR REGISTRATION INVOICE

AMOUNT DUE: 300.00

Faith Langdon
335 River Circle
Champaign, IL 61256

Make: Toyota
Model: Corolla
Year: 2021
Color: Red
VIN: CAR2927528306
Fuel: Fossil

TRUCK REGISTRATION INVOICE

AMOUNT DUE: 400.00

Joshua Lewis
801 River Court
Apt B
Champaign, IL 62030

Make: Nissan
Model: Titan XD
Year: 2021
Color: Black
VIN: TRK6602773660
Gross WT: 11,000

Page 20 of 24

TRUCK REGISTRATION INVOICE

AMOUNT DUE: 400.00

Sebastian Lewis
100 Potter Way
Champaign, IL 60143

Make: Ford
Model: Super Duty F-350
Year: 2021
Color: Grey
VIN: TRK3575913453
Gross WT: 12,000

SNOWMOBILE REGISTRATION INVOICE

AMOUNT DUE: 45.00

Boris Marshall
103 High Circle
Apt A
Champaign, IL 60700

Make: Ski-Doo
Model: Summit Edge 850 E-TEC 165
Year: 2022
Color: Grey
VIN: SNW6504064609

<--- A Large Number of Invoices Have Been Omitted to Save Space --->

MOTORCYCLE REGISTRATION INVOICE

AMOUNT DUE: 75.00

Page 21 of 24

Oliver Cameron
555 Pleasant Circle
Waukegan, IL 61303

Make: Triumph
Model: Trident 660
Year: 2021
Color: Red
VIN: MCY1042465955
Displace: 660

MOTORCYCLE REGISTRATION INVOICE

AMOUNT DUE: 75.00

Dominic Mackay
750 Center Blvd
Waukegan, IL 62374

Make: Royal Enfield
Model: Meteor 350
Year: 2021
Color: Grey
VIN: MCY5807211506
Displace: 349

SNOWMOBILE REGISTRATION INVOICE

AMOUNT DUE: 45.00

John May
888 Main Blvd
Waukegan, IL 61261

Make: Arctic Cat
Model: ZR 9000 Thundercat
Year: 2021
Color: Blue
VIN: SNW9112403883

Page 22 of 24

SNOWMOBILE REGISTRATION INVOICE

AMOUNT DUE: 45.00

Richard Metcalfe
611 West End Street
Apt B
Waukegan, IL 60838

Make: Polaris
Model: Pro RMK Matryx Slash Patriot Boost 163
Year: 2021
Color: Black
VIN: SNW5667579989

CAR REGISTRATION INVOICE

AMOUNT DUE: 300.00

Tracey Peake
555 High Court
Waukegan, IL 61926

Make: Nissan
Model: Altima
Year: 2021
Color: White
VIN: CAR2412599457
Fuel: Fossil

CAR REGISTRATION INVOICE

AMOUNT DUE: 300.00

Wanda Underwood
702 Center Way
Waukegan, IL 61636

Make: Honda
Model: Civic
Year: 2022
Color: White
VIN: CAR2407296694

Page 23 of 24

Fuel: Fossil

100 invoices have been printed.

Page 24 of 24

Tools
Use PyCharm to create and test all Python programs.

Submission Method
Follow the process that I demonstrated in the tutorial video on submitting your work.
This involves:

• Locating the properly named directory associated with your project in the file
system.

• Compressing that directory into a single .ZIP file using a utility program.
• Submitting the properly named zip file to the submission activity for this

assignment.

File and Directory Naming
Please name your Python program files as instructed in each exercise. Please use the
following naming scheme for naming your PyCharm project:

 surname_givenname_exercises_severance_chapter_14

If this were my own project, I would name my PyCharm project as follows:

 trainor_kevin_exercises_severance_chapter_14

Use a zip utility to create one zip file that contain the PyCharm project directory.
The zip file should be named according to the following scheme:

 surname_givenname_exercises_severance_chapter_14.zip

If this were my own project, I would name the zip file as follows:

 trainor_kevin_exercises_severance_chapter_14.zip

Due By
Please submit this assignment by the date and time shown in the Weekly Schedule.

Last Revised
2022-06-02

