
Page 1 of 12

Zelle 3e Chapter 11 Coding Assignment

General Instructions
My expectations for your work on coding assignment exercises will grow as we progress
through the course. In addition to applying any new programming techniques that have
been covered in the current chapter, I will be expecting you to follow all of the good
programming practices that we have adopted in the preceding weeks. Here is a quick
summary of good practices that we have covered so far:

• Include a Python Docstring that describes the intent of the program.
• Place your highest-level code in a function named main.
• Include a final line of code in the program that executes the main function.
• Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor.

For example, place two blank lines between the code making up a function and
the code surrounding that function.

• Choose names for your variables that are properly descriptive.
• Define CONSTANT_VALUES and use them in place of magic numbers.
• Always use f-strings for string interpolation and number formatting.
• When processing items from Python lists and tuples, unpack the values into

variables with meaningful variable names to avoid using indexed expressions in
your code.

• Close all files before the conclusion of the program.
• Remember that your program should behave reasonably when it is not given any

input. This might be the result of the user pressing enter at a console prompt.
Or, it might be the result of the user providing a an input file that is empty.

• Model your solution after the code that I demonstrate in the tutorial videos.
• Make sure that your test input/output matches the sample provided.
• Create a sub-directory named data within your PyCharm project to hold data

files.
• Remember to submit all data files with your PyCharm project – including the files

that were provided as starter files to this assignment.
• All functions that are not main() should have descriptive, action-oriented names.
• All functions should be of reasonable size.
• All functions should have high cohesion, and low coupling.
• Remember to test your program thoroughly before submitting your work.
• Your code must pass all relevant test cases. Make sure that it passes tests at the

boundaries created by if, else, and elif conditions in your program (boundary
value tests).

• Use of the break statement is allowed but not encouraged.
• Use of the continue statement is forbidden.

Page 2 of 12

Exercise 1 (Required)
Create a program named distribute_race_ribbons_with_dictionary.py. It should
modeled after the program that I demonstrated in the tutorial
(lookup_region_name_with_dictionary.py). Your program should be different in the
following respects:

1. Your program will prompt the user for the place number in which the runner
finished and it will respond with the name of the ribbon to be awarded.

The following table indicates which ribbon the participant should receive based up the
place number in which they finished.

Place Ribbon
1 Blue
2 Red
3 Orange
4 Gold
5 Green
6 Purple

>6 White

If the user enters a place number that is less than 1, then the program should display an
error message in place of a ribbon name.

When running a test where the user provides no input, you should expect the following
input/output on your console:

Please enter place finished (1, 2, 3...):

Thanks for playing.

When running a test where the user provides bad integer input, you should expect the
following input/output on your console:

Please enter place finished (1, 2, 3...): hi mom
An integer value was expected. You entered hi mom
Please enter place finished (1, 2, 3...): 7
Ribbon Awarded: White

Please enter place finished (1, 2, 3...):

Thanks for playing.

Page 3 of 12

When running a test where a user provides an invalid place number, you should expect
the following input/output on your console:

Please enter place finished (1, 2, 3...): 0
Ribbon Awarded: ERROR - Place must be greater than zero.

Please enter place finished (1, 2, 3...):

Thanks for playing.

When running a test with more typical input, you should expect the following
input/output on your console:

Please enter place finished (1, 2, 3...): 1
Ribbon Awarded: Blue

Please enter place finished (1, 2, 3...): 2
Ribbon Awarded: Red

Please enter place finished (1, 2, 3...): 3
Ribbon Awarded: Orange

Please enter place finished (1, 2, 3...): 6
Ribbon Awarded: Purple

Please enter place finished (1, 2, 3...): 7
Ribbon Awarded: White

Please enter place finished (1, 2, 3...): 10
Ribbon Awarded: White

Please enter place finished (1, 2, 3...): 22
Ribbon Awarded: White

Please enter place finished (1, 2, 3...):

Thanks for playing.

Page 4 of 12

Exercise 2 (Required)
Create a program named analyze_expense_records_2.py. It should modeled after the
program that I demonstrated in the tutorial analyze_expense_records.py). Your
program should be different in the following respects:

1. It should target expense records with a year of 2021.

2. It should target expense records with a category of ‘Utilities’.

3. In addition to providing the mean value, it should also provide the median value.

Mean and median values should be calculated using the Python statistics package:
https://docs.python.org/3/library/statistics.html .

The following starter files are provided for your use in this exercise:

• empty_file.txt
• test_expense_2021.csv
• expense_records.csv

When running a test with the empty input file, you should expect the following
input/output on your console:

Please enter the input filename: empty_file.txt

SUMMARY OF UTILITIES EXPENSES FOR 2021

Month Amount
 1 0.00
 2 0.00
 3 0.00
 4 0.00
 5 0.00
 6 0.00
 7 0.00
 8 0.00
 9 0.00
 10 0.00
 11 0.00
 12 0.00

The mean value was 0.00
The median value was 0.00

0 lines were read from the input file.
0 qualifying expense records were found.

Page 5 of 12

When running a test with the test input file, you should expect the following
input/output on your console:

Please enter the input filename: test_expense_2021.csv

SUMMARY OF UTILITIES EXPENSES FOR 2021

Month Amount
 1 333.33
 2 333.33
 3 333.33
 4 333.33
 5 333.33
 6 333.33
 7 333.33
 8 333.33
 9 333.33
 10 333.33
 11 333.33
 12 333.33

The mean value was 333.33
The median value was 333.33

73 lines were read from the input file.
24 qualifying expense records were found.

Page 6 of 12

When running a test where the production input file, you should expect the following
input/output on your console:

Please enter the input filename: expense_records.csv

SUMMARY OF UTILITIES EXPENSES FOR 2021

Month Amount
 1 58,986.73
 2 71,418.23
 3 67,361.43
 4 64,864.79
 5 69,780.78
 6 67,408.51
 7 56,411.29
 8 64,604.41
 9 86,856.16
 10 49,318.79
 11 63,268.65
 12 73,163.29

The mean value was 66,120.26
The median value was 66,113.11

20,001 lines were read from the input file.
755 qualifying expense records were found.

Page 7 of 12

Exercise 3 (Required)
Create a program named create_population_density_reports.py. It should modeled
after the program that I demonstrated in the tutorial (create_state_area_reports.py).
Your program should be different in the following respects:

1. It should create reports about population density.

2. It should use the provided Country class as the data holder class.

3. The data to be analyzed are in a file named desity_data.txt. Each line of the file
contains three fields (separated by semicolons):

a. Country name
b. Population
c. Area in square miles

The following starter files are provided for your use in this exercise:

• empty_file.txt
• density_data.txt
• my_countries.py
• is430_unit_test_helpers.py

When running a test with the empty input file, you should expect the following
input/output on your console:

Please enter the input filename: empty_file.txt

 BY COUNTRY NAME

Country Population Area Density
 (SQMI) (/SQMI)

 BY DESCENDING POPULATION DENSITY PER SQUARE MILE

Country Population Area Density
 (SQMI) (/SQMI)

Page 8 of 12

When running a test with the production input file, you should expect the following
input/output on your console:

Please enter the input filename: density_data.txt

 BY COUNTRY NAME

Country Population Area Density
 (SQMI) (/SQMI)
Bangladesh 166,132,772 55,598 2,988
Belgium 11,454,906 11,787 972
Burundi 10,681,186 10,740 995
Dominican Republic 10,266,149 18,485 555
Germany 82,979,100 137,903 602
Haiti 11,112,945 10,450 1,063
India 1,344,098,517 1,269,211 1,059
Israel 8,997,000 8,522 1,056
Japan 126,320,000 145,925 866
Netherlands 17,301,708 16,033 1,079
Nigeria 195,875,237 356,669 549
North Korea 25,610,672 47,399 540
Pakistan 203,841,217 310,403 657
Philippines 107,275,680 115,831 926
Rwanda 12,001,136 10,169 1,180
South Korea 51,635,256 38,691 1,335
Sri Lanka 21,670,000 25,332 855
Taiwan 23,590,744 13,976 1,688
United Kingdom 66,040,229 93,788 704
Vietnam 94,660,000 127,882 740

 BY DESCENDING POPULATION DENSITY PER SQUARE MILE

Country Population Area Density
 (SQMI) (/SQMI)
Bangladesh 166,132,772 55,598 2,988
Taiwan 23,590,744 13,976 1,688
South Korea 51,635,256 38,691 1,335
Rwanda 12,001,136 10,169 1,180
Netherlands 17,301,708 16,033 1,079
Haiti 11,112,945 10,450 1,063
India 1,344,098,517 1,269,211 1,059
Israel 8,997,000 8,522 1,056
Burundi 10,681,186 10,740 995
Belgium 11,454,906 11,787 972
Philippines 107,275,680 115,831 926
Japan 126,320,000 145,925 866

Page 9 of 12

Sri Lanka 21,670,000 25,332 855
Vietnam 94,660,000 127,882 740
United Kingdom 66,040,229 93,788 704
Pakistan 203,841,217 310,403 657
Germany 82,979,100 137,903 602
Dominican Republic 10,266,149 18,485 555
Nigeria 195,875,237 356,669 549
North Korea 25,610,672 47,399 540

Page 10 of 12

Exercise 4 (Required)
Create a program named analyze_slot_machine_tries_ignoring_duplicates.py. It should
modeled after the program that I demonstrated in the tutorial
(analyze_slot_machine_tries.py). Your program should be different in the following
respects:

1. It should ignore duplicate color values that occur on the same line of the input
file. So, if the line holds the values: “Red Blue Red Red Blue”, then the program
should process this line as though it holds the values: “Red Blue”.

Please refer to the tutorial for an approach to removing duplicate entries from Python
lists.

The following starter files are provided for your use in this exercise:

• empty_file.txt
• slot_values.txt

When running a test with the empty input file, you should expect the following
input/output on your console:

Please enter the input filename: empty_file.txt

COLOR COUNT

When running a test with the production input file, you should expect the following
input/output on your console:

Please enter the input filename: slot_values.txt

COLOR COUNT
Blue 2,990
Green 2,983
Orange 3,024
Purple 3,015
Red 2,959
Yellow 3,011

Page 11 of 12

Exercise 5 (Optional Challenge Exercise)
Create a program named create_population_density_reports_with_lambda.py. This
program should be modeled after your solution to Exercise 3
(create_population_density_reports.py). This program should be different in the
following respects:

1. Instead of using conventional Python functions to specify the sort keys, this
program should use Python lambdas.
See https://realpython.com/python-lambda/ .

The testing for this program should be the same as the program in Exercise 3. Please
refer to those instructions for expected output.

Page 12 of 12

Tools
Use PyCharm to create and test all Python programs.

Submission Method
Follow the process that I demonstrated in the tutorial video on submitting your work.
This involves:

• Locating the properly named directory associated with your project in the file
system.

• Compressing that directory into a single .ZIP file using a utility program.
• Submitting the properly named zip file to the submission activity for this

assignment.

File and Directory Naming
Please name your Python program files as instructed in each exercise. Please use the
following naming scheme for naming your PyCharm project:

 surname_givenname_exercises_zelle_3e_chapter_11

If this were my own project, I would name my PyCharm project as follows:

 trainor_kevin_exercises_zelle_3e_chapter_11

Use a zip utility to create one zip file that contain the PyCharm project directory.
The zip file should be named according to the following scheme:

 surname_givenname_exercises_zelle_3e_chapter_11.zip

If this were my own project, I would name the zip file as follows:

 trainor_kevin_exercises_zelle_3e_chapter_11.zip

Due By
Please submit this assignment by the date and time shown in the Weekly Schedule.

Last Revised
2022-03-9

