
Page 1 of 21

IS430 – Instructions for the Final Project

General Instructions
In the Final Project, I will be expecting you to follow all of the good programming practices that
we have adopted in the course. Here is a quick summary of good practices that we have
covered:

• Include a Python Docstring that describes the intent of the program.
• Place your highest-level code in a function named main.
• Include a final line of code in the program that executes the main function.
• Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor. For

example, place two blank lines between the code making up a function and the code
surrounding that function.

• Choose names for your variables that are properly descriptive.
• Define CONSTANT_VALUES and use them in place of magic numbers.
• Always use f-strings for string interpolation and number formatting.
• When processing items from Python lists and tuples, unpack the values into variables

with meaningful variable names to avoid using indexed expressions in your code.
• Close all files before the conclusion of the program.
• Remember that your program should behave reasonably when it is not given any input.

This might be the result of the user pressing enter at a console prompt. Or, it might be
the result of the user providing a an input file that is empty.

• Model your solution after the code that I demonstrate in the tutorial videos.
• Make sure that your test input/output matches the sample provided.
• Create a sub-directory named data within your PyCharm project to hold data files.
• Remember to submit all data files with your PyCharm project – including the files that

were provided as starter files to this assignment.
• All functions that are not main() should have descriptive, action-oriented names.
• All functions should be of reasonable size.
• All functions should have high cohesion, and low coupling.
• Remember to test your program thoroughly before submitting your work.
• Your code must pass all relevant test cases. Make sure that it passes tests at the

boundaries created by if, else, and elif conditions in your program (boundary value
tests).

• Use of the break statement is allowed but not encouraged.
• Use of the continue statement is forbidden.
• Regular expression patterns should be expressed as Python raw strings
• Your finished code must be refactored to meet all good program design practices

covered in this course.
• Custom Python classes should be created using Python Dataclasses and follow all

practices demonstrated in our course.
• Jupyter Notebooks should follow all good practices demonstrated in our course.

Page 2 of 21

Overview
The Final Project is a special coding assignment. It is longer than the typical weekly coding
assignments and the exercises are more interrelated. Nevertheless, you should recognize this
assignment as being similar to a weekly coding assignment.

There are two tutorial videos provided for this assignment:

1. A tutorial on how to create the Anaconda virtual environment for this project.

2. A typical tutorial for Exercise 1 in which I show the code for the exercise with the
expectation that you will follow along on your computer.

Although there are no tutorial videos provided for the other exercises, the instructions for
these exercises identify exercises from the weekly coding assignments that are similar. You
should feel free to consult the solutions and video tutorials for those exercises as a reference.

The code for one of the exercises is provided in the starter file. Your responsibility will be to
add the program to your project, run it successfully, and integrate it into the Jupyter Notebook
(see Exercise 6).

In this project you will select, summarize, and report on expense data from the 3 operating
divisions of an international company. These divisions include U.S., U.K., and France.

The workflow has three major steps:

• Select and Summarize
• Join Country Summaries
• Create Company-Wide Expense Summary Reports

In the Select and Summarize step, there is a separate program that must be run for each
country's operations (see Exercises 1, 2, and 3). The raw expense data from each country's
operations are contained in a single file with a descriptive name. In the first step of the
workflow, you will run individual select and summarize programs for each of these 3 files. In
this step, expense records are selected based upon the year and expense category. The target
year for this project is 2020. The target expense category for this project is Fuel.

In the Join Country Summaries step, you will join the data from the 3 output files generated in
the previous step. One summary data file is created that joins the expense data for U.K., U.S.,
and France operations (see Exercise 4).

In the Create Company-Wide Expense Summary Reports step, you will generate company-wide
expense summary reports that combine expense data from U.S., U.K., and France operations.
You have the option of creating two versions of these reports. The first is the regular version
produced in Exercise 6. The second is the challenge version produced in Exercise 8. The
programs for Exercises 6 and 8 require a custom Python dataclass that is created in Exercise 5.

Page 3 of 21

Finally, in Exercise 7, you will build a Jupiter Notebook that provides documentation for the
Final Project and a means to run all of it parts. This means that all of the programs that you
create for the Final Project must follow the conventions that we have used for Python programs
to be called from a Jupyter Notebook.

PLEASE NOTE: The exercises in this Final Project were inspired by an exercise in one of our
weekly coding assignments. Despite this similarity, there are many differences. So, please read
the instructions carefully and don’t be distracted by assuming that these exercises are more
similar to the exercise that inspired them than they actually are.

Starter Files
I have provided starter files for this project in the following ZIP file:

• starter_files_for_final_project.zip

Page 4 of 21

Exercise 1 (Required)
Create a program named us_select_and_summarize.py. This is the same program that I
demonstrate in the tutorial video. You should follow along to create this program in your
project.

Two alternative input files have been provided in the starter files for this program:

• empty_file.txt
• us_expense_records.txt

This program will produce one output file:

• us_summarized_target_expenses.txt

Please note that processing the U.S. expense data does not require currency conversion
because the amounts are already stated in U.S. Dollars (USD).

When running a test with the empty input file, you should expect the following output on your
console:

0 lines were read from empty_file.txt.
0 qualifying expense records were accumulated.

U.S. OPERATIONS
SUMMARY OF FUEL EXPENSES FOR 2020

Month Amount (USD)
 1 0.00
 2 0.00
 3 0.00
 4 0.00
 5 0.00
 6 0.00
 7 0.00
 8 0.00
 9 0.00
 10 0.00
 11 0.00
 12 0.00

Summary file was created as us_summarized_target_expenses.txt.	

Page 5 of 21

When running a test with the populated input file, you should expect the following output on
your console:

20,001 lines were read from us_expense_records.txt.
749 qualifying expense records were accumulated.

U.S. OPERATIONS
SUMMARY OF FUEL EXPENSES FOR 2020

Month Amount (USD)
 1 72,742.79
 2 45,758.93
 3 64,399.68
 4 58,308.71
 5 61,662.60
 6 70,589.85
 7 59,945.88
 8 69,182.55
 9 73,945.30
 10 69,162.65
 11 62,375.22
 12 83,871.87

Summary file was created as us_summarized_target_expenses.txt.

When running a test with the populated input file, you should expect the following contents in
the output file:

Country,Expense Category,Month,Year,Amount (USD)
US,Fuel,1,2020,72742.79
US,Fuel,2,2020,45758.93
US,Fuel,3,2020,64399.68
US,Fuel,4,2020,58308.71
US,Fuel,5,2020,61662.60
US,Fuel,6,2020,70589.85
US,Fuel,7,2020,59945.88
US,Fuel,8,2020,69182.55
US,Fuel,9,2020,73945.30
US,Fuel,10,2020,69162.65
US,Fuel,11,2020,62375.22
US,Fuel,12,2020,83871.87

Page 6 of 21

Exercise 2 (Required)
Create a program named uk_select_and_summarize.py. Model this program after the program
created in Exercise 1 (us_select_and_summarize.py). Your program should be different in the
following respects:

1. It will process expense records from U.K. operations rather than U.S. operations.

2. It will require the recognition of a European format date (DD/MM/YYYY).

3. It will require the conversion of amounts from U.K. pounds to U.S. dollars using the
following conversion factor:

a. POUNDS_TO_DOLLARS_CONVERSION_FACTOR = 1.3114

Two alternative input files have been provided in the starter files for this program:

• empty_file.txt
• uk_expense_records.txt

This program will produce one output file:

• uk_summarized_target_expenses.txt

When running a test with the empty input file, you should expect the following output on your
console:

0 lines were read from empty_file.txt.
0 qualifying expense records were accumulated.

U.K. OPERATIONS
SUMMARY OF FUEL EXPENSES FOR 2020

Month Amount (USD)
 1 0.00
 2 0.00
 3 0.00
 4 0.00
 5 0.00
 6 0.00
 7 0.00
 8 0.00
 9 0.00
 10 0.00
 11 0.00
 12 0.00

Page 7 of 21

Summary file was created as uk_summarized_target_expenses.txt.

When running a test with the populated input file, you should expect the following output on
your console:

6,667 lines were read from uk_expense_records.txt.
217 qualifying expense records were accumulated.

U.K. OPERATIONS
SUMMARY OF FUEL EXPENSES FOR 2020

Month Amount (USD)
 1 16,083.88
 2 24,874.43
 3 19,376.45
 4 19,591.66
 5 20,596.45
 6 17,399.42
 7 22,621.51
 8 23,754.80
 9 11,856.29
 10 12,775.92
 11 22,577.32
 12 17,280.50

Summary file was created as uk_summarized_target_expenses.txt.

Page 8 of 21

When running a test with the populated input file, you should expect the following contents in
the output file:

Country,Expense Category,Month,Year,Amount (USD)
UK,Fuel,1,2020, 16083.88
UK,Fuel,2,2020, 24874.43
UK,Fuel,3,2020, 19376.45
UK,Fuel,4,2020, 19591.66
UK,Fuel,5,2020, 20596.45
UK,Fuel,6,2020, 17399.42
UK,Fuel,7,2020, 22621.51
UK,Fuel,8,2020, 23754.80
UK,Fuel,9,2020, 11856.29
UK,Fuel,10,2020, 12775.92
UK,Fuel,11,2020, 22577.32
UK,Fuel,12,2020, 17280.50

Page 9 of 21

Exercise 3 (Required)
Create a program named fr_select_and_summarize.py. Model this program after the program
created in Exercise 2 (uk_select_and_summarize.py). Your program should be different in the
following respects:

1. It will process expense records from France operations rather than U.K. operations.

2. Note that it will also require the recognition of a European format date (DD/MM/YYYY).

3. It will require the conversion of amounts from Euros to U.S. dollars using the following
conversion factor:

a. EUROS_TO_DOLLARS_CONVERSION_FACTOR = 1.1043

Two alternative input files have been provided in the starter files for this program:

• empty_file.txt
• fr_expense_records.txt

This program will produce one output file:

• fr_summarized_target_expenses.txt

When running a test with the empty input file, you should expect the following output on your
console:

0 lines were read from empty_file.txt.
0 qualifying expense records were accumulated.

FRENCH OPERATIONS
SUMMARY OF FUEL EXPENSES FOR 2020

Month Amount (USD)
 1 0.00
 2 0.00
 3 0.00
 4 0.00
 5 0.00
 6 0.00
 7 0.00
 8 0.00
 9 0.00
 10 0.00
 11 0.00
 12 0.00

Page 10 of 21

Summary file was created as fr_summarized_target_expenses.txt.

When running a test with the populated input file, you should expect the following output on
your console:

5,001 lines were read from fr_expense_records.txt.
191 qualifying expense records were accumulated.

FRENCH OPERATIONS
SUMMARY OF FUEL EXPENSES FOR 2020

Month Amount (USD)
 1 14,365.95
 2 14,354.80
 3 16,059.11
 4 17,538.96
 5 12,199.59
 6 14,119.40
 7 24,520.53
 8 13,556.39
 9 16,615.88
 10 16,768.71
 11 17,964.19
 12 18,998.29

Summary file was created as fr_summarized_target_expenses.txt.

Page 11 of 21

When running a test with the populated input file, you should expect the following contents in
the output file:

Country,Expense Category,Month,Year,Amount (USD)
FR,Fuel,1,2020, 14365.95
FR,Fuel,2,2020, 14354.80
FR,Fuel,3,2020, 16059.11
FR,Fuel,4,2020, 17538.96
FR,Fuel,5,2020, 12199.59
FR,Fuel,6,2020, 14119.40
FR,Fuel,7,2020, 24520.53
FR,Fuel,8,2020, 13556.39
FR,Fuel,9,2020, 16615.88
FR,Fuel,10,2020, 16768.71
FR,Fuel,11,2020, 17964.19
FR,Fuel,12,2020, 18998.29

Page 12 of 21

Exercise 4 (Required)
The program for this exercise has been provided in the starter files:

• join_selected_summarized_expenses.py

This program reads the summarized files created in Exercises 1, 2, and 3. It joins these files to
create a summarized file that includes amounts for operations in U.S., U.K., and France.

This program has 3 input files that were created in the preceding exercises:

• us_summarized_target_expenses.txt
• uk_summarized_target_expenses.txt
• fr_summarized_target_expenses.txt

This program creates a short report on the console and one output file:

• joined_summarized_target_expenses.txt

When running a test with the empty input file, you should expect the following input/output on
your console:

ValueError: One or more input files are empty.

When running a test with all 3 populated input files, you should expect the following output on
your console:

12 joined expense summary records were written to
joined_summarized_target_expenses.txt.	

Page 13 of 21

When running a test with 3 populated input files, you should expect the following contents in
the output file:

Expense Category,Month,Year,US Amount (USD), UK Amount (USD), FR Amount
(USD)
Fuel,1,2020,72742.79, 16083.88, 14365.95
Fuel,2,2020,45758.93, 24874.43, 14354.80
Fuel,3,2020,64399.68, 19376.45, 16059.11
Fuel,4,2020,58308.71, 19591.66, 17538.96
Fuel,5,2020,61662.60, 20596.45, 12199.59
Fuel,6,2020,70589.85, 17399.42, 14119.40
Fuel,7,2020,59945.88, 22621.51, 24520.53
Fuel,8,2020,69182.55, 23754.80, 13556.39
Fuel,9,2020,73945.30, 11856.29, 16615.88
Fuel,10,2020,69162.65, 12775.92, 16768.71
Fuel,11,2020,62375.22, 22577.32, 17964.19
Fuel,12,2020,83871.87, 17280.50, 18998.29

Page 14 of 21

Exercise 5 (Required)
Create a program named my_expense_summary.py. It should be modeled after the solution to
Exercise 1 of the Severance Chapter 14 Coding Assignment. Your program should be different
in the following respects:

1. Your program will implement the ExpenseSummary class that holds data facts regarding
expense amounts for U.S., U.K., and France operations.

2. The ExpenseSummary class should implement the following instance variables:

• category: str
• month: int
• year: int
• us_amount: float
• uk_amount: float
• fr_amount: float

3. You will also need to implement the following method:

a. calculate_total_amount() returns the sum of us_amount, uk_amount, and
fr_amount as a float.

4. Unit testing code should be placed in the main() function and should follow the

approach used in Exercise 1 of the Severance Chapter 14 Coding Assignment. .

When running the unit tests, you should expect the following output on your console:

Unit testing output follows...

Test Case #1: Test constructor
Passed
Passed
Passed
Passed
Passed
Passed

Test Case #2: Test calculate_total_amount
Passed

Page 15 of 21

Exercise 6 (Required)
Create a program named create_companywide_expense_summary_report.py. It should be
modeled after the solution to Exercise 2 in the Severance Chapter 14 Coding Assignment. Your
program should be different in the following respects:

1. Your program will create a report of ExpenseSummary data facts in two different sort
orders:

a. By Month
b. By Descending Total Amount

2. Your program should accumulate totals for each row of data facts and print a total line

at the bottom of each report.

3. Your program should give expected results when run with the following input files

provided as starter files:

a. empty_file.txt
b. joined_summarized_target_expenses.txt

4. The importing of the my_expense_summary.py module into your program should NOT

cause the unit test code in that program to be executed.

When running a test with the empty input file, you should expect the following output on your
console:

 COMBINED OPERATIONS
 SUMMARY OF EXPENSE AMOUNTS FOR 0
 BY MONTH

Month US Amount UK Amount FR Amount Total Amount
 (USD) (USD) (USD) (USD)
Total 0.00 0.00 0.00 0.00

 COMBINED OPERATIONS
 SUMMARY OF EXPENSE AMOUNTS FOR 0
 BY DESCENDING TOTAL AMOUNT

Month US Amount UK Amount FR Amount Total Amount
 (USD) (USD) (USD) (USD)
Total 0.00 0.00 0.00 0.00

Page 16 of 21

When running a test with the populated input file, you should expect the following output on
your console:

 COMBINED OPERATIONS
 SUMMARY OF FUEL EXPENSE AMOUNTS FOR 2020
 BY MONTH

Month US Amount UK Amount FR Amount Total Amount
 (USD) (USD) (USD) (USD)
 1 72,742.79 16,083.88 14,365.95 103,192.62
 2 45,758.93 24,874.43 14,354.80 84,988.16
 3 64,399.68 19,376.45 16,059.11 99,835.24
 4 58,308.71 19,591.66 17,538.96 95,439.33
 5 61,662.60 20,596.45 12,199.59 94,458.64
 6 70,589.85 17,399.42 14,119.40 102,108.67
 7 59,945.88 22,621.51 24,520.53 107,087.92
 8 69,182.55 23,754.80 13,556.39 106,493.74
 9 73,945.30 11,856.29 16,615.88 102,417.47
 10 69,162.65 12,775.92 16,768.71 98,707.28
 11 62,375.22 22,577.32 17,964.19 102,916.73
 12 83,871.87 17,280.50 18,998.29 120,150.66
Total 791,946.03 228,788.63 197,061.80 1,217,796.46

 COMBINED OPERATIONS
 SUMMARY OF FUEL EXPENSE AMOUNTS FOR 2020
 BY DESCENDING TOTAL AMOUNT

Month US Amount UK Amount FR Amount Total Amount
 (USD) (USD) (USD) (USD)
 12 83,871.87 17,280.50 18,998.29 120,150.66
 7 59,945.88 22,621.51 24,520.53 107,087.92
 8 69,182.55 23,754.80 13,556.39 106,493.74
 1 72,742.79 16,083.88 14,365.95 103,192.62
 11 62,375.22 22,577.32 17,964.19 102,916.73
 9 73,945.30 11,856.29 16,615.88 102,417.47
 6 70,589.85 17,399.42 14,119.40 102,108.67
 3 64,399.68 19,376.45 16,059.11 99,835.24
 10 69,162.65 12,775.92 16,768.71 98,707.28
 4 58,308.71 19,591.66 17,538.96 95,439.33
 5 61,662.60 20,596.45 12,199.59 94,458.64
 2 45,758.93 24,874.43 14,354.80 84,988.16
Total 791,946.03 228,788.63 197,061.80 1,217,796.46

Page 17 of 21

Exercise 7 (Required)
Create a Jupyter Notebook in your PyCharm project named final_project_notebook.ipynb. It
should be modeled after the solution to the Jupyter Notebook Assignment.

This notebook should run the workflow that includes all of the exercises in this Final Project. If
you will be doing the Exercise 8 Challenge, that part of the workflow should also be included.

This notebook should include complete documentation for the Final Project workflow. This
includes the following sections:

1. Title
2. Requirements
3. Overview
4. Select and Summarize

a. U.S.
b. U.K.
c. France

5. Join Country Summaries
6. Create Company-Wide Expense Summary Report

a. Regular Version (From Exercise 6)
b. Challenge Version (From Exercise 8)

When writing the documentation for sections like Overview, feel free to use text from these
instructions.

Your work on this exercise should conform to all good practices that were required for the
Jupyter Notebook Assignment.

Page 18 of 21

Exercise 8 (Optional Challenge Exercise)
Create a program named create_companywide_expense_summary_report_challenge.py. Begin
by copying the program that you created in Exercise 6
(create_companywide_expense_summary_report.py) and renaming it. Your program should be
different in the following respects:

1. Your program will create a report of ExpenseSummary data facts in two different sort
orders:

a. By Month
b. By Descending Total Amount

2. Your program will create reports in two different formats:

a. Amount Reports
b. Percentage Reports

3. Your program should accumulate totals for each row of data facts and print a total line

at the bottom of each report. Amount reports will show amount totals. Percentage
reports will show percent totals.

4. Your program should give expected results when run with the following input files

provided as starter files:

a. empty_file.txt
b. joined_summarized_target_expenses.txt

5. The importing of the my_expense_summary.py module into your program should NOT

cause the unit test code in that program to be executed.

Page 19 of 21

When running a test with the empty input file, you should expect the following output on your
console:

ValueError: This program does not support processing with an empty input
file.

When running a test with the populated input file, you should expect the following output on
your console:

 COMBINED OPERATIONS
 SUMMARY OF FUEL EXPENSE AMOUNTS FOR 2020
 BY MONTH

Month US Amount UK Amount FR Amount Total Amount
 (USD) (USD) (USD) (USD)
 1 72,742.79 16,083.88 14,365.95 103,192.62
 2 45,758.93 24,874.43 14,354.80 84,988.16
 3 64,399.68 19,376.45 16,059.11 99,835.24
 4 58,308.71 19,591.66 17,538.96 95,439.33
 5 61,662.60 20,596.45 12,199.59 94,458.64
 6 70,589.85 17,399.42 14,119.40 102,108.67
 7 59,945.88 22,621.51 24,520.53 107,087.92
 8 69,182.55 23,754.80 13,556.39 106,493.74
 9 73,945.30 11,856.29 16,615.88 102,417.47
 10 69,162.65 12,775.92 16,768.71 98,707.28
 11 62,375.22 22,577.32 17,964.19 102,916.73
 12 83,871.87 17,280.50 18,998.29 120,150.66
Total 791,946.03 228,788.63 197,061.80 1,217,796.46

 COMBINED OPERATIONS
 SUMMARY OF FUEL EXPENSE PERCENTAGES FOR 2020
 BY MONTH

Month US Amount UK Amount FR Amount Total Amount
 (% of Total) (% of Total) (% of Total) (% of Total)
 1 9.19% 7.03% 7.29% 8.47%
 2 5.78% 10.87% 7.28% 6.98%
 3 8.13% 8.47% 8.15% 8.20%
 4 7.36% 8.56% 8.90% 7.84%
 5 7.79% 9.00% 6.19% 7.76%
 6 8.91% 7.61% 7.16% 8.38%
 7 7.57% 9.89% 12.44% 8.79%
 8 8.74% 10.38% 6.88% 8.74%
 9 9.34% 5.18% 8.43% 8.41%

Page 20 of 21

 10 8.73% 5.58% 8.51% 8.11%
 11 7.88% 9.87% 9.12% 8.45%
 12 10.59% 7.55% 9.64% 9.87%
Total 100.00% 100.00% 100.00% 100.00%

 COMBINED OPERATIONS
 SUMMARY OF FUEL EXPENSE AMOUNTS FOR 2020
 BY DESCENDING TOTAL AMOUNT

Month US Amount UK Amount FR Amount Total Amount
 (USD) (USD) (USD) (USD)
 12 83,871.87 17,280.50 18,998.29 120,150.66
 7 59,945.88 22,621.51 24,520.53 107,087.92
 8 69,182.55 23,754.80 13,556.39 106,493.74
 1 72,742.79 16,083.88 14,365.95 103,192.62
 11 62,375.22 22,577.32 17,964.19 102,916.73
 9 73,945.30 11,856.29 16,615.88 102,417.47
 6 70,589.85 17,399.42 14,119.40 102,108.67
 3 64,399.68 19,376.45 16,059.11 99,835.24
 10 69,162.65 12,775.92 16,768.71 98,707.28
 4 58,308.71 19,591.66 17,538.96 95,439.33
 5 61,662.60 20,596.45 12,199.59 94,458.64
 2 45,758.93 24,874.43 14,354.80 84,988.16
Total 791,946.03 228,788.63 197,061.80 1,217,796.46

 COMBINED OPERATIONS
 SUMMARY OF FUEL EXPENSE PERCENTAGES FOR 2020
 BY DESCENDING TOTAL AMOUNT

Month US Amount UK Amount FR Amount Total Amount
 (% of Total) (% of Total) (% of Total) (% of Total)
 12 10.59% 7.55% 9.64% 9.87%
 7 7.57% 9.89% 12.44% 8.79%
 8 8.74% 10.38% 6.88% 8.74%
 1 9.19% 7.03% 7.29% 8.47%
 11 7.88% 9.87% 9.12% 8.45%
 9 9.34% 5.18% 8.43% 8.41%
 6 8.91% 7.61% 7.16% 8.38%
 3 8.13% 8.47% 8.15% 8.20%
 10 8.73% 5.58% 8.51% 8.11%
 4 7.36% 8.56% 8.90% 7.84%
 5 7.79% 9.00% 6.19% 7.76%
 2 5.78% 10.87% 7.28% 6.98%
Total 100.00% 100.00% 100.00% 100.00%	

Page 21 of 21

Tools
Use PyCharm to create and test all Python programs.

Submission Method
Follow the process that I demonstrated in the tutorial video on submitting your work. This
involves:

• Locating the properly named directory associated with your project in the file system.
• Compressing that directory into a single .ZIP file using a utility program.
• Submitting the properly named zip file to the submission activity for this assignment.

File and Directory Naming
Please name your Python program files as instructed in each exercise. Please use the following
naming scheme for naming your PyCharm project:

 surname_givenname_final_project

If this were my own project, I would name my PyCharm project as follows:

 trainor_kevin_final_project

Use a zip utility to create one zip file that contain the PyCharm project directory. The zip
file should be named according to the following scheme:

 surname_givenname_final_project.zip

If this were my own project, I would name the zip file as follows:

 trainor_kevin_final_project.zip

Due By
Please submit this assignment by the date and time shown in the Weekly Schedule.

Last Revised
2022-04-11

