
Python Programming, 3/e 1

Python Programing:
An Introduction to
Computer Science

Chapter 11
Data Collections

Python Programming, 3/e 2

Objectives
 To understand the use of lists (arrays)

to represent a collection of related data.
 To be familiar with the functions and

methods available for manipulating
Python lists.

 To be able to write programs that use
lists to manage a collection of
information.

Python Programming, 3/e 3

Objectives
 To be able to write programs that use

lists and classes to structure complex
data.

 To understand the use of Python
dictionaries for storing nonsequential
collections.

Python Programming, 3/e 4

Example Problem:
Simple Statistics
 Many programs deal with large

collections of similar information.
 Words in a document
 Students in a course
 Data from an experiment
 Customers of a business
 Graphics objects drawn on the screen
 Cards in a deck

Python Programming, 3/e 5

Sample Problem:
Simple Statistics

Let’s review some code we wrote in chapter 8:

average4.py
A program to average a set of numbers
Illustrates sentinel loop using empty string as sentinel

def main():
sum = 0.0
count = 0
xStr = input("Enter a number (<Enter> to quit) >> ")
while xStr != "":

x = float(xStr)
sum = sum + x
count = count + 1
xStr = input("Enter a number (<Enter> to quit) >> ")

print("\nThe average of the numbers is", sum / count)

Python Programming, 3/e 6

Sample Problem:
Simple Statistics
 This program allows the user to enter a

sequence of numbers, but the program
itself doesn’t keep track of the numbers
that were entered – it only keeps a
running total.

 Suppose we want to extend the program
to compute not only the mean, but also
the median and standard deviation.

Python Programming, 3/e 7

Sample Problem:
Simple Statistics
 The median is the data value that splits

the data into equal-sized parts.
 For the data 2, 4, 6, 9, 13, the median

is 6, since there are two values greater
than 6 and two values that are smaller.

 One way to determine the median is to
store all the numbers, sort them, and
identify the middle value.

Python Programming, 3/e 8

Sample Problem:
Simple Statistics
 The standard deviation is a measure of how

spread out the data is relative to the mean.
 If the data is tightly clustered around the

mean, then the standard deviation is small. If
the data is more spread out, the standard
deviation is larger.

 The standard deviation is a yardstick to
measure/express how exceptional a value is.

Python Programming, 3/e 9

Sample Problem:
Simple Statistics
 The standard deviation is

 Here is the mean, represents the ith
data value and n is the number of data
values.

 The expression is the square of the
“deviation” of an individual item from the
mean.

()2

1
ix x

s
n
−

=
−

∑

x ix

()2
ix x−

Python Programming, 3/e 10

Sample Problem:
Simple Statistics
 The numerator is the sum of these

squared “deviations” across all the data.
 Suppose our data was 2, 4, 6, 9, and

13.
 The mean is 6.8
 The numerator of the standard deviation is
() () () () ()2 2 2 2 26.8 2 6.8 4 6.8 6 6.8 9 6.8 13 74.8

74.8 18.7 4.32
5 1

s

− + − + − + − + − =

= = =
−

Python Programming, 3/e 11

Sample Problem:
Simple Statistics
 As you can see, calculating the standard

deviation not only requires the mean
(which can’t be calculated until all the
data is entered), but also each
individual data element!

 We need some way to remember these
values as they are entered.

Python Programming, 3/e 12

Applying Lists
 We need a way to store and manipulate

an entire collection of numbers.
 We can’t just use a bunch of variables,

because we don’t know many numbers
there will be.

 What do we need? Some way of
combining an entire collection of values
into one object.

Python Programming, 3/e 13

Lists and Arrays
 Python lists are ordered sequences of items.

For instance, a sequence of n numbers might
be called S:
S = s0, s1, s2, s3, …, sn-1

 Specific values in the sequence can be referenced
using subscripts.

 By using numbers as subscripts, mathematicians can
succinctly summarize computations over items in a
sequence using subscript variables. 1

0

n

i
i

s
−

=
∑

Python Programming, 3/e 14

Lists and Arrays
 Suppose the sequence is stored in a

variable s. We could write a loop to
calculate the sum of the items in the
sequence like this:
sum = 0
for i in range(n):

sum = sum + s[i]

 Almost all computer languages have a
sequence structure like this, sometimes
called an array.

Python Programming, 3/e 15

Lists and Arrays
 A list or array is a sequence of items where

the entire sequence is referred to by a single
name (i.e. s) and individual items can be
selected by indexing (i.e. s[i]).

 In other programming languages, arrays are
generally a fixed size, meaning that when you
create the array, you have to specify how
many items it can hold.

 Arrays are generally also homogeneous,
meaning they can hold only one data type.

Python Programming, 3/e 16

Lists and Arrays
 Python lists are dynamic. They can

grow and shrink on demand.
 Python lists are also heterogeneous, a

single list can hold arbitrary data types.
 Python lists are mutable sequences of

arbitrary objects.

Python Programming, 3/e 17

List Operations
Operator Meaning

<seq> + <seq> Concatenation
<seq> * <int-expr> Repetition

<seq>[] Indexing
len(<seq>) Length
<seq>[:] Slicing

for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)

Python Programming, 3/e 18

List Operations
 Except for the membership check,

we’ve used these operations before on
strings.

 The membership operation can be used
to see if a certain value appears
anywhere in a sequence.
>>> lst = [1,2,3,4]
>>> 3 in lst
True

Python Programming, 3/e 19

List Operations
 The summing example from earlier can be

written like this:
sum = 0
for x in s:

sum = sum + x

 Unlike strings, lists are mutable:
>>> lst = [1,2,3,4]
>>> lst[3]
4
>>> lst[3] = "Hello“
>>> lst
[1, 2, 3, 'Hello']
>>> lst[2] = 7
>>> lst
[1, 2, 7, 'Hello']

Python Programming, 3/e 20

List Operations
 A list of identical items can be created

using the repetition operator. This
command produces a list containing 50
zeroes:
zeroes = [0] * 50

Python Programming, 3/e 21

List Operations
 Lists are often built up one piece at a

time using append.
nums = []
x = float(input('Enter a number: '))
while x >= 0:

nums.append(x)
x = float(input('Enter a number: '))

 Here, nums is being used as an
accumulator, starting out empty, and
each time through the loop a new value
is tacked on.

Python Programming, 3/e 22

List Operations
Method Meaning

<list>.append(x) Add element x to end of list.

<list>.sort() Sort (order) the list. A comparison function may be
passed as a parameter.

<list>.reverse() Reverse the list.

<list>.index(x) Returns index of first occurrence of x.

<list>.insert(i, x) Insert x into list at index i.

<list>.count(x) Returns the number of occurrences of x in list.

<list>.remove(x) Deletes the first occurrence of x in list.

<list>.pop(i) Deletes the ith element of the list and returns its value.

List Operations
>>> lst = [3, 1, 4, 1, 5, 9]
>>> lst.append(2)
>>> lst
[3, 1, 4, 1, 5, 9, 2]
>>> lst.sort()
>>> lst
[1, 1, 2, 3, 4, 5, 9]
>>> lst.reverse()
>>> lst
[9, 5, 4, 3, 2, 1, 1]
>>> lst.index(4)
2

>>> lst.insert(4, "Hello")
>>> lst
[9, 5, 4, 3, 'Hello', 2, 1, 1]
>>> lst.count(1)s
2
>>> lst.remove(1)
>>> lst
[9, 5, 4, 3, 'Hello', 2, 1]
>>> lst.pop(3)
3
>>> lst
[9, 5, 4, 'Hello', 2, 1]

Python Programming, 3/e 23

Python Programming, 3/e 24

List Operations
 Most of these methods don’t return a

value – they change the contents of the
list in some way.

 Lists can grow by appending new items,
and shrink when items are deleted.
Individual items or entire slices can be
removed from a list using the del
operator.

Python Programming, 3/e 25

List Operations
 >>> myList=[34, 26, 0, 10]

>>> del myList[1]
>>> myList
[34, 0, 10]
>>> del myList[1:3]
>>> myList
[34]

 del isn’t a list method, but a built-in
operation that can be used on list
items.

Python Programming, 3/e 26

List Operations
 Basic list principles

 A list is a sequence of items stored as a
single object.

 Items in a list can be accessed by indexing,
and sublists can be accessed by slicing.

 Lists are mutable; individual items or entire
slices can be replaced through assignment
statements.

Python Programming, 3/e 27

List Operations
 Lists support a number of convenient and

frequently used methods.
 Lists will grow and shrink as needed.

Python Programming, 3/e 28

Statistics with Lists
 One way we can solve our statistics

problem is to store the data in a list.
 We could then write a series of

functions that take a list of numbers
and calculates the mean, standard
deviation, and median.

 Let’s rewrite our earlier program to use
lists to find the mean.

Python Programming, 3/e 29

Statistics with Lists
 Let’s write a function called
getNumbers that gets numbers from
the user.
 We’ll implement the sentinel loop to get

the numbers.
 An initially empty list is used as an

accumulator to collect the numbers.
 The list is returned once all values have

been entered.

Python Programming, 3/e 30

Statistics with Lists
def getNumbers():

nums = [] # start with an empty list

sentinel loop to get numbers
xStr = input("Enter a number (<Enter> to quit) >> ")
while xStr != "":

x = float(xStr)
nums.append(x) # add this value to the list
xStr = input("Enter a number (<Enter> to quit) >> ")

return nums

 Using this code, we can get a list of
numbers from the user with a single line of
code:
data = getNumbers()

Python Programming, 3/e 31

Statistics with Lists
 Now we need a function that will

calculate the mean of the numbers in a
list.
 Input: a list of numbers
 Output: the mean of the input list

 def mean(nums):
sum = 0.0
for num in nums:

sum = sum + num
return sum / len(nums)

Python Programming, 3/e 32

Statistics with Lists
 The next function to tackle is the

standard deviation.
 In order to determine the standard

deviation, we need to know the mean.
 Should we recalculate the mean inside of
stdDev?

 Should the mean be passed as a parameter
to stdDev?

Python Programming, 3/e 33

Statistics with Lists
 Recalculating the mean inside of
stdDev is inefficient if the data set is
large.

 Since our program is outputting both
the mean and the standard deviation,
let’s compute the mean and pass it to
stdDev as a parameter.

Python Programming, 3/e 34

Statistics with Lists
 def stdDev(nums, xbar):

sumDevSq = 0.0
for num in nums:

dev = xbar - num
sumDevSq = sumDevSq + dev * dev

return sqrt(sumDevSq/(len(nums)-1))

 The summation from the formula is
accomplished with a loop and accumulator.

 sumDevSq stores the running sum of the
squares of the deviations.

Python Programming, 3/e 35

Statistics with Lists
 We don’t have a formula to calculate the

median. We’ll need to come up with an
algorithm to pick out the middle value.

 First, we need to arrange the numbers in
ascending order.

 Second, the middle value in the list is the
median.

 If the list has an even length, the median is
the average of the middle two values.

Python Programming, 3/e 36

Statistics with Lists
 Pseudocode -

sort the numbers into ascending order

if the size of the data is odd:

median = the middle value

else:

median = the average of the two middle values

return median

Python Programming, 3/e 37

Statistics with Lists
def median(nums):

nums.sort()
size = len(nums)
midPos = size // 2
if size % 2 == 0:

median = (nums[midPos] + nums[midPos-1]) / 2
else:

median = nums[midPos]
return median

Python Programming, 3/e 38

Statistics with Lists

 With these functions, the main program is
pretty simple!

def main():
print("This program computes mean, median and standard deviation.")

data = getNumbers()
xbar = mean(data)
std = stdDev(data, xbar)
med = median(data)

print("\nThe mean is", xbar)
print("The standard deviation is", std)
print("The median is", med)

Python Programming, 3/e 39

Statistics with Lists
 Statistical analysis routines might come

in handy some time, so let’s add the
capability to use this code as a module
by adding:
if __name__ == '__main__': main()

Python Programming, 3/e 40

Lists of Records
 All of the list examples we’ve looked at

so far have involved simple data types
like numbers and strings.

 We can also use lists to store more
complex data types, like our student
information from chapter ten.

Python Programming, 3/e 41

Lists of Objects
 Our grade processing program read

through a file of student grade
information and then printed out
information about the student with the
highest GPA.

 A common operation on data like this is
to sort it, perhaps alphabetically,
perhaps by credit-hours, or even by
GPA.

Python Programming, 3/e 42

Lists of Objects
 Let’s write a program that sorts students

according to GPA using our Sutdent class
from the last chapter.

 Get the name of the input file from the user
Read student information into a list
Sort the list by GPA
Get the name of the output file from the user
Write the student information from the list into a file

Python Programming, 3/e 43

Lists of Records
 Let’s begin with the file processing. The

following code reads through the data file
and creates a list of students.

 def readStudents(filename):
infile = open(filename, 'r')
students = []
for line in infile:

students.append(makeStudent(line))
infile.close()
return students

 We’re using the makeStudent from the gpa
program, so we’ll need to remember to
import it and the Student class.

Python Programming, 3/e 44

Lists of Records
 Let’s also write a function to write the list of

students back to a file.
 Each line should contain three pieces of

information, separated by tabs: name, credit
hours, and quality points.

 def writeStudents(students, filename):
students is a list of Student objects
outfile = open(filename, 'w')
for s in students:

print("{0}\t{1}\t{2}".format(s.getName(),\
s.getHours(),s.getQPoints(), file=outfile)

outfile.close()

Python Programming, 3/e 45

Lists of Objects
 Using the functions readStudents and
writeStudents, we can convert our
data file into a list of students and then
write them back to a file. All we need to
do now is sort the records by GPA.

 In the statistics program, we used the
sort method to sort a list of numbers.
How does Python sort lists of objects?

Python Programming, 3/e 46

Lists of Objects
 To make sorting work with our objects, we

need to tell sort how the objects should be
compared.

 Can supply a function to produce the key for
an object using
<list>.sort(key=<key-function>)

 To sort by GPA, we need a function that takes
a Student as parameter and returns the
student's GPA.

Python Programming, 3/e 47

Lists of Objects
 def use_gpa(aStudent):

return aStudent.gpa()

 We can now sort the data by calling
sort with the key function as a keyword
parameter.

 data.sort(key=use_gpa)

Python Programming, 3/e 48

Lists of Objects
 data.sort(key=use_gpa)

 Notice that we didn’t put ()’s after the
function name.

 This is because we don’t want to call
use_gpa, but rather, we want to send
use_gpa to the sort method.

Lists of Objects
 Actually, defining use_gpa was

unnecessary.
 The gpa method in the Student class is

a function that takes a student as a
parameter (formally, self) and returns
GPA.

 To use it:
data.sort(key=Student.gpa)

Python Programming, 3/e 49

Python Programming, 3/e 50

Lists of Objects
gpasort.py
A program to sort student information
into GPA order.

from gpa import Student, makeStudent

def readStudents(filename):
infile = open(filename, 'r')
students = []
for line in infile:

students.append(makeStudent(line))
infile.close()
return students

def writeStudents(students, filename):
outfile = open(filename, 'w')
for s in students:

print(s.getName(), s.getHours(), s.getQPoints(),
sep="\t", file=outfile)

outfile.close()

def main():
print ("This program sorts student grade information by

GPA")
filename = input("Enter the name of the data file: ")
data = readStudents(filename)
data.sort(Student.gpa)
filename = input("Enter a name for the output file: ")
writeStudents(data, filename)
print("The data has been written to", filename)

if __name__ == '__main__':
main()

Python Programming, 3/e 51

Designing with
Lists and Classes
 In the dieView class from chapter ten,

each object keeps track of seven circles
representing the position of pips on the
face of the die.

 Previously, we used specific instance
variables to keep track of each pip:
pip1, pip2, pip3, …

Python Programming, 3/e 52

Designing with
Lists and Classes
 What happens if we try to store the circle

objects using a list?
 In the previous program, the pips were

created like this:
self.pip1 = self.__makePip(cx, cy)

 __makePip is a local method of the
DieView class that creates a circle centered
at the position given by its parameters.

Python Programming, 3/e 53

Designing with
Lists and Classes
 One approach is to start with an empty

list of pips and build up the list one pip
at a time.

pips = []
pips.append(self.__makePip(cx-offset,cy-offset)
pips.append(self.__makePip(cx-offset,cy)
…
self.pips = pips

Python Programming, 3/e 54

Designing with
Lists and Classes
 An even more straightforward approach is to

create the list directly.
self.pips = [self.__makePip(cx-offset,cy-offset),

self.__makePip(cx-offset,cy),
…
self.__makePip(cx+offset,cy+offset)
]

 Python is smart enough to know that this
object is continued over a number of lines,
and waits for the ‘]’.

 Listing objects like this, one per line, makes it
much easier to read.

Python Programming, 3/e 55

Designing with
Lists and Classes
 Putting our pips into a list makes many

actions simpler to perform.
 To blank out the die by setting all the

pips to the background color:
for pip in self.pips:

pip.setFill(self.background)

 This cut our previous code from seven
lines to two!

Python Programming, 3/e 56

Designing with
Lists and Classes
 We can turn the pips back on using the

pips list. Our original code looked like
this:

self.pip1.setFill(self.foreground)
self.pip4.setFill(self.foreground)
self.pip7.setFill(self.foreground)

 Into this:
self.pips[0].setFill(self.foreground)
self.pips[3].setFill(self.foreground)
self.pips[6].setFill(self.foreground)

Python Programming, 3/e 57

Designing with
Lists and Classes
 Here’s an even easier way to access the

same methods:
for i in [0,3,6]:

self.pips[i].setFill(self.foreground)

 We can take advantage of this
approach by keeping a list of which pips
to activate!

 Loop through pips and turn them all off
Determine the list of pip indexes to turn on
Loop through the list of indexes - turn on those pips

Python Programming, 3/e 58

Designing with
Lists and Classes
for pip in self.pips:

self.pip.setFill(self.background)
if value == 1:

on = [3]
elif value == 2:

on = [0,6]
elif value == 3:

on = [0,3,6]
elif value == 4:

on = [0,2,4,6]
elif value == 5:

on = [0,2,3,4,6]
else:

on = [0,1,2,3,4,5,6]
for i in on:

self.pips[i].setFill(self.foreground)

Python Programming, 3/e 59

Designing with
Lists and Classes
 We can do even better!
 The correct set of pips is determined by
value. We can make this process table-
driven instead.

 We can use a list where each item on the list
is itself a list of pip indexes.

 For example, the item in position 3 should be
the list [0,3,6] since these are the pips
that must be turned on to show a value of 3.

Python Programming, 3/e 60

Designing with
Lists and Classes
 Here’s the table-driven code:

onTable = [[], [3], [2,4], [2,3,4], [0,2,4,6],
[0,2,3,4,6], [0,1,2,4,5,6]]

for pip in self.pips:
self.pip.setFill(self.background)

on = onTable[value]
for i in on:

self.pips[i].setFill(self.foreground)

Python Programming, 3/e 61

Designing with
Lists and Classes
 The table is padded with ‘[]’ in the 0 position,

since it shouldn’t ever be used.
 The onTable will remain unchanged through

the life of a dieView, so it would make
sense to store this table in the constructor
and save it in an instance variable.

Python Programming, 3/e 62

Designing with
Lists and Classes
 Lastly, this example showcases the

advantages of encapsulation.
 We have improved the implementation of the
dieView class, but we have not changed the set
of methods it supports.

 We can substitute this new version of the class
without having to modify any other code!

 Encapsulation allows us to build complex software
systems as a set of “pluggable modules.”

Python Programming, 3/e 63

Case Study: Python Calculator
 The new dieView class shows how lists can

be used effectively as instance variables of
objects.

 Our pips list and onTable contain circles and
lists, respectively, which are themselves
objects.

 We can view a program itself as a collection
of data structures (collections and objects)
and a set of algorithms that operate on those
data structures.

Python Programming, 3/e 64

A Calculator as an Object
 Let’s develop a program that implements a

Python calculator.
 Our calculator will have buttons for

 The ten digits (0-9)
 A decimal point (.)
 Four operations (+,-,*,/)
 A few special keys

 ‘C’ to clear the display
 ‘<-’ to backspace in the display
 ‘=’ to do the calculation

Python Programming, 3/e 65

A Calculator as an Object

Python Programming, 3/e 66

A Calculator as an Object
 We can take a simple approach to

performing the calculations. As buttons
are pressed, they show up in the
display, and are evaluated and the
value displayed when the = is pressed.

 We can divide the functioning of the
calculator into two parts: creating the
interface and interacting with the user.

Python Programming, 3/e 67

Constructing the Interface
 First, we create a graphics window.
 The coordinates were chosen to simplify the layout of

the buttons.
 In the last line, the window object is stored in an

instance variable so that other methods can refer to
it.

 def __init__(self):
create the window for the calculator
win = GraphWin("calculator")
win.setCoords(0,0,6,7)
win.setBackground("slategray")
self.win = win

Python Programming, 3/e 68

Constructing the Interface
 Our next step is to create the buttons, reusing

the button class.
create list of buttons
start with all the standard sized buttons
bSpecs gives center coords and label of buttons
bSpecs = [(2,1,'0'), (3,1,'.'),

(1,2,'1'), (2,2,'2'), (3,2,'3'), (4,2,'+'), (5,2,'-'),
(1,3,'4'), (2,3,'5'), (3,3,'6'), (4,3,'*'), (5,3,'/'),
(1,4,'7'), (2,4,'8'), (3,4,'9'), (4,4,'<-'),(5,4,'C')]

self.buttons = []
for cx,cy,label in bSpecs:

self.buttons.append(Button(self.win,Point(cx,cy),.75,.75,label))
create the larger = button
self.buttons.append(Button(self.win, Point(4.5,1), 1.75, .75, "="))
activate all buttons
for b in self.buttons:

b.activate()

 bspecs contains a list of button specifications,
including the center point of the button and its
label.

Python Programming, 3/e 69

Constructing the Interface
 Each specification is a tuple.
 A tuple looks like a list but uses ‘()’

rather than ‘[]’.
 Tuples are sequences that are

immutable.

Python Programming, 3/e 70

Constructing the Interface
 Conceptually, each iteration of the loop starts

with an assignment:
(cx,cy,label)=<next item from bSpecs>

 Each item in bSpecs is also a tuple.
 When a tuple of variables is used on the left

side of an assignment, the corresponding
components of the tuple on the right side are
unpacked into the variables on the left side.

 The first time through it’s as if we had:
cx,cy,label = 2,1,"0"

Python Programming, 3/e 71

Constructing the Interface
 Each time through the loop, another tuple

from bSpecs is unpacked into the variables
in the loop heading.

 These values are then used to create a
Button that is appended to the list of
buttons.

 Creating the display is simple – it’s just a
rectangle with some text centered on it. We
need to save the text object as an instance
variable so its contents can be accessed and
changed.

Python Programming, 3/e 72

Constructing the Interface
 Here’s the code to create the display
bg = Rectangle(Point(.5,5.5), Point(5.5,6.5))
bg.setFill('white')
bg.draw(self.win)
text = Text(Point(3,6), "")
text.draw(self.win)
text.setFace("courier")
text.setStyle("bold")
text.setSize(16)
self.display = text

Python Programming, 3/e 73

Processing Buttons
 Now that the interface is drawn, we

need a method to get it running.
 We’ll use an event loop that waits for a

button to be clicked and then processes
that button.

def run(self):
Infinite 'event loop' to process button clicks.
while True:

key = self.getKeyPress()
self.processKey(key)

Python Programming, 3/e 74

Processing Buttons
 We continue getting mouse clicks until a

button is clicked.
 To determine whether a button has been

clicked, we loop through the list of buttons
and check each one.

def getKeyPress(self):
Waits for a button to be clicked and
returns the label of
the button that was clicked.
while True:

p = self.win.getMouse()
for b in self.buttons:

if b.clicked(p):
return b.getLabel() # method exit

Python Programming, 3/e 75

Processing Buttons
 Having the buttons in a list like this is a

big win. A for loop is used to look at
each button in turn.

 If the clicked point p turns out to be in
one of the buttons, the label of the
button is returned, providing an exit
from the otherwise infinite loop.

Python Programming, 3/e 76

Processing Buttons
 The last step is to update the display of

the calculator according to which button
was clicked.

 A digit or operator is appended to the
display. If key contains the label of the
button, and text contains the current
contents of the display, the code is:
self.display.setText(text+key)

Python Programming, 3/e 77

Processing Buttons
 The clear key blanks the display:
self.display.setText("")

 The backspace key strips off one
character:
self.display.setText(text[:-1])

 The equal key causes the expression to
be evaluated and the result displayed.

Python Programming, 3/e 78

Processing Buttons
try:

result = eval(text)
except:

result = 'ERROR'
self.display.setText(str(result))

 Exception handling is necessary here to catch
run-time errors if the expression being
evaluated isn’t a legal Python expression. If
there’s an error, the program will display
ERROR rather than crash.

Python Programming, 3/e 79

Case Study:
Better Cannon Ball Animation
 The calculator example used a list of Button

objects to simplify the code.
 Maintaining a collection of similar objects as a

list was strictly a programming convenience,
because the contents of the button list never
changed.

 Lists become essential when the collection
changes dynamically.

Python Programming, 3/e 80

Case Study:
Better Cannon Ball Animation
 In last chapter’s cannon ball animation, the

proram could show only a single shot at a
time.

 Here we will extend the program to allow
multiple shots.
 Doing this requires keeping track of all the cannon

balls currently in flight.
 This is a constantly varying collection, and we can

use a list to manage it.

Python Programming, 3/e 81

Creating a Launcher
 We need to update the program’s user

interface so that firing multiple shots is
feasible.

 In the previous version, we got information
from the user via a simple dialog window.

 For this version we want to add a new widget
that allows the user to rapidly fire shots with
various starting angles and velocities, like in a
video game.

Python Programming, 3/e 82

Creating a Launcher
 The launcher widget will show a cannon ball

ready to be launched along with an arrow
representing the current settings for the
angle and velocity of launch.

 The angle of the arrow indicates the direction
of the launch, and the length of the arrow
represents the initial speed.
 Mathematically inclined readers might recognize

this as the standard vector representation of the
initial velocity.

Python Programming, 3/e 83

Creating a Launcher

Python Programming, 3/e 84

Creating a Launcher
 The entire simulation will be under keyboard

control, with keys to increase/decrease the
launch angle, increase/decrease the speed,
and fire the shot.

 We start by defining a Launcher.
 The Launcher will need to keep track of a

current angle (self.angle) and velocity
(self.vel).

Python Programming, 3/e 85

Creating a Launcher
 We need to first decide on units.

 The obvious choice for velocity is meters per second,
since that’s what Projectile uses.

 For the angle, it’s most efficient to work with radians
since that’s what the Python library uses. For passing
values in, degrees are useful as they are more intuitive
for more programmers.

 The constructor will be the hardest method to
write, so let’s write some others first to gain
insight into what the constructor will have to do.

Python Programming, 3/e 86

Creating a Launcher
 We need mutator methods to change the

angle and velocity.
 When we press a certain key, we want the

angle to increase or decrease a fixed amount.
The exact amount is up to the interface, so
we will pass that as a parameter to the
method.

 When the angle changes, we also need to
redraw the Launcher to reflect the new value.

Python Programming, 3/e 87

Creating a Launcher
class Launcher:

def adjAngle(self, amt):

""" change angle by amt degrees """

self.angle = self.angle+radians(amt)

self.redraw()

 Redrawing will be done by an as-yet
unwritten method (since adjusting the
velocity will also need to redraw).

 Positive values of amt will raise the launch
angle, negative will decrease it.

Python Programming, 3/e 88

Creating a Launcher
def adjVel(self, amt):

""" change velocity by amt"""

self.vel = self.vel + amt

self.redraw()

 Similarly, we can use positive or negative
values of amt to increase or decrease the
velocity, respectively.

Python Programming, 3/e 89

Creating a Launcher
 What should redraw do?

 Undraw the current arrow
 Use the values of self.angle and self.vel to

draw a new one
 We can use the setArrow method of our graphics

library to put an arrowhead at either or both ends
of a line.

 To undraw the arrow, we’ll need an instance
variable to store it – let’s call it self.arrow.

Python Programming, 3/e 90

Creating a Launcher
def redraw(self):

"""undraw the arrow and draw a new one for the

current values of angle and velocity.

"""

self.arrow.undraw()

pt2 = Point(self.vel*cos(self.angle),

self.vel*sin(self.angle)) # p. 321

self.arrow = Line(Point(0,0), pt2).draw(self.win)

self.arrow.setArrow("last")

self.arrow.setWidth(3)

Python Programming, 3/e 91

Creating a Launcher
 We need a method to “fire” a shot from the

Launcher.
 Didn’t we just design a ShotTracker class that we

could reuse?
 ShotTracker requires window, angle, velocity, and

height as parameters.
 The initial height will be 0, angle and velocity are

instance variables.
 But what about the window? Do we want a new

window, or use the existing one? We need a
self.win

Python Programming, 3/e 92

Creating a Launcher

def fire(self):

return ShotTracker(self.win,
degrees(self.angle), self.vel, 0.0)

 This method simply returns an appropriate
ShotTracker object.

 It will be up to the interface to actually
animate the shot.
 Is the fire method the right place?
 Hint: Should launcher interaction be modal?

Python Programming, 3/e 93

Creating a Launcher
def __init__(self, win):

draw the base shot of the launcher

base = Circle(Point(0,0), 3)

base.setFill("red")

base.setOutline("red")

base.draw(win)

save the window and create initial angle and velocity

self.win = win

self.angle = radians(45.0)

self.vel = 40.0

create inital "dummy" arrow

self.arrow = Line(Point(0,0), Point(0,0)).draw(win)

replace it with the correct arrow

self.redraw()

Python Programming, 3/e 94

Tracking Multiple Shots
 The more interesting problem is how to have

multiple things happening at one time.
 We want to be able to adjust the launcher

and fire more shots while some shots are still
in the air.

 To do this, the event loop that monitors
keyboard input has to run (to keep
interaction active) while the cannon balls are
flying.

Python Programming, 3/e 95

Tracking Multiple Shots
 Our event loop needs to also serve as the

animation loop for all the shots that are
“alive.”

 The basic idea:
 The event loop iterates at 30 iterations per

second (for smooth animation)
 Each time through the loop:

 Move all the shots that are in flight
 Perform any requested action

Python Programming, 3/e 96

Tracking Multiple Shots
 Let’s proceed like the calculator, and create

an application object called ProjectileApp.
 The class will contain a constructor that

draws the interface and initializes all the
necessary variables, as well as a run method
to implement the combined event/animation
loop.

Python Programming, 3/e 97

Tracking Multiple Shots
class ProjectileApp:

def __init__(self):

self.win = GraphWin("Projectile Animation", 640, 480)

self.win.setCoords(-10, -10, 210, 155)

Line(Point(-10,0), Point(210,0)).draw(self.win)

for x in range(0, 210, 50):

Text(Point(x,-7), str(x)).draw(self.win)

Line(Point(x,0), Point(x,2)).draw(self.win)

self.launcher = Launcher(self.win)

self.shots = []

Tracking Multiple Shots
def run(self):

launcher = self.launcher

win = self.win

while True:

self.updateShots(1/30)

key = win.checkKey()

if key in ["q", "Q"]:

break

if key == "Up":

launcher.adjAngle(5)

elif key == "Down":

launcher.adjAngle(-5)

elif key == "Right":

launcher.adjVel(5)

elif key == "Left":

launcher.adjVel(-5)

elif key == "f":

self.shots.append(launcher.fire())

update(30)

win.close()

Python Programming, 3/e 98

Python Programming, 3/e 99

Tracking Multiple Shots
 The first line in the loop invokes a helper

method that moves all of the live shots. (This
is the animation portion of the loop.)

 We use checkKey to ensure that the loop
keeps going around to keep the shots moving
even when no key has been pressed.

 When the user presses “f”, we get a
ShotTracker object from the launcher and
simply add this to the list of live shots.

Python Programming, 3/e 100

Creating a Launcher
 The ShotTracker created by the launcher’s fire

method is automatically drawn in the window, and
adding it to the list of shots (via self.shots.append)
ensures that its position changes each time through
the loop, due to the updateShots call at the top of
the loop.

 The last line of the loop ensures that all of the
graphics updates are drawn and serves to throttle
the loop to a maximum of 30 iterations per second,
matching the time interval (1/30 second).

Python Programming, 3/e 101

Creating a Launcher
 updateShots has two jobs

 Move all the live shots
 Update the list to remove any that have “died”

(either landed or flown horizontally out of the
window).

 The second task keeps the list trimmed to
just the shots that need animating.

 The first task is easy – loop through the list of
ShotTracker objects and ask each to update.

Python Programming, 3/e 102

Creating a Launcher
def updateShots(self, dt):

for shot in self.shots:

shot.update(dt)

 dt tells the amount of time into the future to
move the shot.

 The second task is to remove dead shots.
 Test that its y position is above 0 and x is

between -10 and 210.

Python Programming, 3/e 103

Creating a Launcher
 Would something like this work?
If shot.getY() < 0 or shot.getX() < -10 or shot.getX() > 210:

self.shots.remove(shot)

 The loop is iterating over self.shots, and
modifying the list while looping through it can
produce strange anomalies.

 A better approach? Create another list to keep track
of shots that are still alive, and swap it for
self.shots at the end of the method.

Python Programming, 3/e 104

Creating a Launcher
def updateShots(self, dt):

alive = []

for shot in self.shots:

shot.update(dt)

if shot.getY() >= 0 and shot.getX() < 210:

alive.append(shot)

else:

shot.undraw()

self.shots = alive

Python Programming, 3/e 105

Creating a Launcher
 Two differences from a moment ago

 We accumulate the shots that are “alive” (which
reverses the logic)

 We undraw the shots that are “dead”

Python Programming, 3/e 106

Non-sequential Collections
 After lists, a dictionary is probably the most

widely used collection data type.
 Dictionaries are not as common in other

languages as lists (arrays).

Python Programming, 3/e 107

Dictionary Basics
 Lists allow us to store and retrieve items from

sequential collections.
 When we want to access an item, we look it up

by index – its position in the collection.
 What if we wanted to look students up by

student id number? In programming, this is
called a key-value pair

 We access the value (the student information)
associated with a particular key (student id)

Python Programming, 3/e 108

Dictionary Basics
 Three are lots of examples!

 Names and phone numbers
 Usernames and passwords
 State names and capitals

 A collection that allows us to look up information
associated with arbitrary keys is called a
mapping.

 Python dictionaries are mappings. Other
languages call them hashes or associative
arrays.

Python Programming, 3/e 109

Dictionary Basics
 Dictionaries can be created in Python by

listing key-value pairs inside of curly braces.
 Keys and values are joined by “:” and are

separated with commas.
>>>passwd = {"guido":"superprogrammer",
"turing":"genius", "bill":"monopoly"}

 We use an indexing notation to do lookups
>>> passwd["guido"]

'superprogrammer'

Python Programming, 3/e 110

Dictionary Basics
 <dictionary>[<key>] returns the object with

the associated key.
 Dictionaries are mutable.
>>> passwd["bill"] = "bluescreen"

>>> passwd

{'guido': 'superprogrammer', 'bill':
'bluescreen', 'turing': 'genius'}

 Did you notice the dictionary printed out in a
different order than it was created?

Python Programming, 3/e 111

Dictionary Basics
 Mappings are inherently unordered.
 Internally, Python stores dictionaries in a way

that makes key lookup very efficient.
 When a dictionary is printed out, the order of

keys will look essentially random.
 If you want to keep a collection in a certain

order, you need a sequence, not a mapping!
 Keys can be any immutable type, values can

be any type, including programmer-defined.

Python Programming, 3/e 112

Dictionary Operations
 Like lists, Python dictionaries support a

number of handy built-in operations.
 A common method for building dictionaries is

to start with an empty collection and add the
key-value pairs one at a time.

passwd = {}

for line in open('passwords', 'r'):

user, pass = line.split()

passwd[user] = pass

Python Programming, 3/e 113

Dictionary Operations
Method Meaning

<key> in <dict> Returns true if dictionary contains the specified key,
false if it doesn’t.

<dict>.keys() Returns a sequence of keys.

<dict>.values() Returns a sequence of values.

<dict>.items() Returns a sequence of tuples (key, value) representing
the key-value pairs.

del <dict>[<key>] Deletes the specified entry.

<dict>.clear() Deletes all entries.

for <var> in <dict>: Loop over the keys.

<dict>.get(<key>, <default>) If dictionary has key returns its value; otherwise returns
default.

Python Programming, 3/e 114

Dictionary Operations
>>> list(passwd.keys())

['guido', 'turing', 'bill']

>>> list(passwd.values())

['superprogrammer', 'genius', 'bluescreen']

>>> list(passwd.items())

[('guido', 'superprogrammer'), ('turing', 'genius'),
('bill', 'bluescreen')]

>>> "bill" in passwd

True

>>> "fred" in passwd

False

Python Programming, 3/e 115

Dictionary Operations
>>> passwd.get('bill','unknown')

'bluescreen'

>>> passwd.get('fred','unknown')

'unknown'

>>> passwd.clear()

>>> passwd

{}

Python Programming, 3/e 116

Example Program:
Word Frequency
 Let’s write a program that analyzes text

documents and counts how many times each
word appears in the document.

 This kind of document is sometimes used as
a crude measure of the style similarity
between two documents and is used by
automatic indexing and archiving programs
(like Internet search engines).

Python Programming, 3/e 117

Example Program:
Word Frequency
 This is a multi-accumulator problem!
 We need a count for each word that appears

in the document.
 We can use a loop that iterates over each

word in the document, incrementing the
appropriate accumulator.

 The catch: we may possibly need hundreds or
thousands of these accumulators!

Python Programming, 3/e 118

Example Program:
Word Frequency
 Let’s use a dictionary where strings

representing the words are the keys and the
values are ints that count up how many times
each word appears.

 To update the count for a particular word, w,
we need something like:
counts[w] = counts[w] + 1

 One problem – the first time we encounter a
word it will not yet be in counts.

Python Programming, 3/e 119

Example Program:
Word Frequency
 Attempting to access a nonexistent key

produces a run-time KeyError.
if w is already in counts:

add one to the count for w

else:

set count for w to 1

 How could this be implemented?

Python Programming, 3/e 120

Example Program:
Word Frequency
if w in counts:

counts[w] = counts[w] + 1
else:

counts[w] = 1

 A more elegant approach:
counts[w] = counts.get(w, 0) + 1
If w is not already in the dictionary, this get will
return 0, and the result is that the entry for w is
set to 1.

Python Programming, 3/e 121

Example Program:
Word Frequency
 The other tasks include

 Convert the text to lowercase (so occurrences of
“Python” match “python”)

 Eliminate punctuation (so “python!” matches
“python”)

 Split the text document into a sequence of words

Python Programming, 3/e 122

Example Program:
Word Frequency
get the sequence of words from the file

fname = input("File to analyze: ")

text = open(fname,'r').read()

text = text.lower()

for ch in '!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~':

text = text.replace(ch, ' ')

words = text.split()

 Loop through the words to build the counts dictionary
counts = {}

for w in words:

counts[w] = counts.get(w,0) + 1

Python Programming, 3/e 123

Example Program:
Word Frequency
 How could we print a list of words in

alphabetical order with their associated
counts?

get list of words that appear in document

uniqueWords = list(counts.keys())

put list of words in alphabetical order

uniqueWords.sort()

print words and associated counts

for w in uniqueWords:

print(w, counts[w])

Python Programming, 3/e 124

Example Program:
Word Frequency
 This will probably not be very useful for large

documents with many words that appear only
a few times.

 A more interesting analysis is to print out the
counts for the n most frequent words in the
document.

 To do this, we’ll need to create a list that is
sorted by counts (most to fewest), and then
select the first n items.

Python Programming, 3/e 125

Example Program:
Word Frequency
 We can start by getting a list of key-value

pairs using the items method for dictionaries.
items = list(count.items())

 items will be a list of tuples like
[('foo', 5), ('bar', 7), ('spam', 376)]

 If we try to sort them with items.sort(), they
will be ordered by components, from left to
right (the left components here are words).
[('bar', 7), ('foo', 5), ('spam', 376)]

Python Programming, 3/e 126

Example Program:
Word Frequency
 This will put the list into alphabetical order –

not what we wanted.
 To sort the items by frequency, we need a

function that will take a pair and return the
frequency.

def byFreq(pair):

return pair[1]

 To sort he list by frequency:
items.sort(key=byFreq)

Python Programming, 3/e 127

Example Program:
Word Frequency
 We’re getting there!
 What if have multiple words with the same

number of occurrences? We’d like them to
print in alphabetical order.

 That is, we want the list of pairs primarily
sorted by frequency, but sorted alphabetically
within each level.

Python Programming, 3/e 128

Example Program:
Word Frequency
 Looking at the documentation for sort (via

help([].sort), it says this method performs a
“stable sort in place”.
 “In place” means the method modifies the list that

it is applied to, rather than producing a new list.
 Stable means equivalent items (equal keys) stay in

the same relative position to each other as they
were in the original.

Python Programming, 3/e 129

Example Program:
Word Frequency

 If all the words were in alphabetical order before
sorting them by frequency, words with the same
frequency will be in alphabetical order!

 We just need to sort the list twice – first by words,
then by frequency.

items.sort() # orders pairs alphabetically

items.sort(key=byFreq, reverse = True) # orders by frequency

 Setting reverse to True tells Python to sort the list
in reverse order.

Python Programming, 3/e 130

Example Program:
Word Frequency
 Now we are ready to print a report of the n

most frequent words.
 Here, the loop index i is used to get the next

pair from the list of items.
 That pair is unpacked into its word and count

components.
 The word is then printed left-justified in

fifteen spaces, followed by the count right-
justified in five spaces.

Python Programming, 3/e 131

Example Program:
Word Frequency

for i in range(n):

word, count = items[i]

print("{0:<15}{1:>5}".format(word, count))

	Python Programing:�An Introduction to�Computer Science
	Objectives
	Objectives
	Example Problem:�Simple Statistics
	Sample Problem:�Simple Statistics
	Sample Problem:�Simple Statistics
	Sample Problem:�Simple Statistics
	Sample Problem:�Simple Statistics
	Sample Problem:�Simple Statistics
	Sample Problem:�Simple Statistics
	Sample Problem:�Simple Statistics
	Applying Lists
	Lists and Arrays
	Lists and Arrays
	Lists and Arrays
	Lists and Arrays
	List Operations
	List Operations
	List Operations
	List Operations
	List Operations
	List Operations
	List Operations
	List Operations
	List Operations
	List Operations
	List Operations
	Statistics with Lists
	Statistics with Lists
	Statistics with Lists
	Statistics with Lists
	Statistics with Lists
	Statistics with Lists
	Statistics with Lists
	Statistics with Lists
	Statistics with Lists
	Statistics with Lists
	Statistics with Lists
	Statistics with Lists
	Lists of Records
	Lists of Objects
	Lists of Objects
	Lists of Records
	Lists of Records
	Lists of Objects
	Lists of Objects
	Lists of Objects
	Lists of Objects
	Lists of Objects
	Lists of Objects
	Designing with�Lists and Classes
	Designing with�Lists and Classes
	Designing with�Lists and Classes
	Designing with�Lists and Classes
	Designing with�Lists and Classes
	Designing with�Lists and Classes
	Designing with�Lists and Classes
	Designing with�Lists and Classes
	Designing with�Lists and Classes
	Designing with�Lists and Classes
	Designing with�Lists and Classes
	Designing with�Lists and Classes
	Case Study: Python Calculator
	A Calculator as an Object
	A Calculator as an Object
	A Calculator as an Object
	Constructing the Interface
	Constructing the Interface
	Constructing the Interface
	Constructing the Interface
	Constructing the Interface
	Constructing the Interface
	Processing Buttons
	Processing Buttons
	Processing Buttons
	Processing Buttons
	Processing Buttons
	Processing Buttons
	Case Study:�Better Cannon Ball Animation
	Case Study:�Better Cannon Ball Animation
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Tracking Multiple Shots
	Tracking Multiple Shots
	Tracking Multiple Shots
	Tracking Multiple Shots
	Tracking Multiple Shots
	Tracking Multiple Shots
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Creating a Launcher
	Non-sequential Collections
	Dictionary Basics
	Dictionary Basics
	Dictionary Basics
	Dictionary Basics
	Dictionary Basics
	Dictionary Operations
	Dictionary Operations
	Dictionary Operations
	Dictionary Operations
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency
	Example Program:�Word Frequency

