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Objectives
 To understand the string data type and 

how strings are represented in the 
computer.

 To become familiar with various 
operations that can be performed on 
strings through built-in functions and 
string methods.
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Objectives
 To understand the basic idea of sequences 

and indexing as they apply to Python strings 
and lists.

 To be able to apply string formatting to 
produce attractive, informative program 
output.

 To understand basic file processing concepts 
and techniques for reading and writing text 
files in Python.
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Objectives
 To understand basic concepts of 

cryptography.
 To be able to understand and write 

programs that process textual 
information.
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The String Data Type
 The most common use of personal 

computers is word processing.
 Text is represented in programs by the 

string data type.
 A string is a sequence of characters 

enclosed within quotation marks (") or 
apostrophes (').
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The String Data Type
>>> str1="Hello"

>>> str2='spam'

>>> print(str1, str2)

Hello spam

>>> type(str1)

<class 'str'>

>>> type(str2)

<class 'str'>
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The String Data Type
 Getting a string as input

>>> firstName = input("Please enter your name: ")

Please enter your name: John

>>> print("Hello", firstName)

Hello John

 Notice that the input is not evaluated. We 
want to store the typed characters, not to 
evaluate them as a Python expression.
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The String Data Type
 We can access the individual characters 

in a string through indexing.
 The positions in a string are numbered 

from the left, starting with 0.
 The general form is <string>[<expr>], 

where the value of expr determines 
which character is selected from the 
string.
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The String Data Type

>>> greet = "Hello Bob"

>>> greet[0]

'H'

>>> print(greet[0], greet[2], greet[4])

H l o

>>> x = 8

>>> print(greet[x - 2])

B

H e l l o B o b

0    1     2    3     4    5     6     7     8
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The String Data Type

 In a string of n characters, the last character 
is at position n-1 since we start counting with 
0.

 We can index from the right side using 
negative indexes.

>>> greet[-1]
'b'
>>> greet[-3]
'B'

H e l l o B o b

0    1     2    3     4    5     6     7     8
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The String Data Type
 Indexing returns a string containing a 

single character from a larger string.
 We can also access a contiguous 

sequence of characters, called a 
substring, through a process called 
slicing.
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The String Data Type
 Slicing:
<string>[<start>:<end>]

 start and end should both be ints
 The slice contains the substring 

beginning at position start and runs up 
to but doesn’t include the position 
end.
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The String Data Type

>>> greet[0:3]
'Hel'
>>> greet[5:9]
' Bob'
>>> greet[:5]
'Hello'
>>> greet[5:]
' Bob'
>>> greet[:]
'Hello Bob'

H e l l o B o b

0    1     2    3     4    5     6     7     8
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The String Data Type
 If either expression is missing, then the 

start or the end of the string are used.
 Can we put two strings together into a 

longer string?
 Concatenation “glues” two strings 

together (+)
 Repetition builds up a string by multiple 

concatenations of a string with itself (*)
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The String Data Type
 The function len will return the length of a 

string.
>>> "spam" + "eggs"
'spameggs'
>>> "Spam" + "And" + "Eggs"
'SpamAndEggs'
>>> 3 * "spam"
'spamspamspam'
>>> "spam" * 5
'spamspamspamspamspam'
>>> (3 * "spam") + ("eggs" * 5)
'spamspamspameggseggseggseggseggs'
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The String Data Type
>>> len("spam")

4

>>> for ch in "Spam!":

print (ch, end=" ")

S p a m !
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The String Data Type
Operator Meaning

+ Concatenation
* Repetition

<string>[] Indexing
<string>[:] Slicing

len(<string>) Length
for <var> in <string> Iteration through characters
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Simple String Processing

 Usernames on a computer system
 First initial, first seven characters of last name

# get user’s first and last names

first = input("Please enter your first name (all lowercase): ")

last = input("Please enter your last name (all lowercase): ")

# concatenate first initial with 7 chars of last name

uname = first[0] + last[:7]
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Simple String Processing
>>> 

Please enter your first name (all lowercase): john

Please enter your last name (all lowercase): doe

uname =  jdoe

>>> 

Please enter your first name (all lowercase): donna

Please enter your last name (all lowercase): rostenkowski

uname =  drostenk
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Simple String Processing
 Another use – converting an int that 

stands for the month into the three 
letter abbreviation for that month.

 Store all the names in one big string:
“JanFebMarAprMayJunJulAugSepOctNovDec”

 Use the month number as an index for 
slicing this string:
monthAbbrev = months[pos:pos+3]
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Simple String Processing
Month Number Position

Jan 1 0
Feb 2 3
Mar 3 6
Apr 4 9

 To get the correct position, subtract one 
from the month number and multiply by 
three



Python Programming, 3/e 22

Simple String Processing
# month.py
#  A program to print the abbreviation of a month, given its number

def main():

# months is used as a lookup table
months = "JanFebMarAprMayJunJulAugSepOctNovDec"

n = int(input("Enter a month number (1-12): "))

# compute starting position of month n in months
pos = (n-1) * 3

# Grab the appropriate slice from months
monthAbbrev = months[pos:pos+3]

# print the result    
print ("The month abbreviation is", monthAbbrev + ".")
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Simple String Processing
>>> main()

Enter a month number (1-12): 1

The month abbreviation is Jan.

>>> main()

Enter a month number (1-12): 12

The month abbreviation is Dec.

 One weakness – this method only works 
where the potential outputs all have the same 
length.

 How could you handle spelling out the 
months?
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Lists as Sequences
 It turns out that strings are really a special 

kind of sequence, so these operations also 
apply to sequences!

>>> [1,2] + [3,4]
[1, 2, 3, 4]
>>> [1,2]*3
[1, 2, 1, 2, 1, 2]
>>> grades = ['A', 'B', 'C', 'D', 'F']
>>> grades[0]
'A'
>>> grades[2:4]
['C', 'D']
>>> len(grades)
5



Python Programming, 3/e 25

Lists as Sequences
 Strings are always sequences of 

characters, but lists can be sequences 
of arbitrary values.

 Lists can have numbers, strings, or 
both!

myList = [1, "Spam ", 4, "U"]
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Lists as Sequences
 We can use the idea of a list to make 

our previous month program even 
simpler!

 We change the lookup table for months 
to a list:

months = ["Jan", "Feb", "Mar", "Apr", "May", 
"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", 
"Dec"]
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Lists as Sequences
 To get the months out of the sequence, 

do this:
monthAbbrev = months[n-1]

Rather than this:
monthAbbrev = months[pos:pos+3]
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Lists as Sequences
# month2.py
#  A program to print the month name, given it's number.
#  This version uses a list as a lookup table.

def main():

# months is a list used as a lookup table
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

n = int(input("Enter a month number (1-12): "))

print ("The month abbreviation is", months[n-1] + ".")

 Note that the months line overlaps a line. 
Python knows that the expression isn’t 
complete until the closing ‘]’ is encountered.
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Lists as Sequences
# month2.py
#  A program to print the month name, given it's number.
#  This version uses a list as a lookup table.

def main():

# months is a list used as a lookup table
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

n = int(input("Enter a month number (1-12): "))

print ("The month abbreviation is", months[n-1] + ".")

 Since the list is indexed starting from 0, the 
n-1 calculation is straight-forward enough to 
put in the print statement without needing a 
separate step.



Python Programming, 3/e 30

Lists as Sequences
 This version of the program is easy to 

extend to print out the whole month 
name rather than an abbreviation!

months = ["January", "February", "March", 
"April", "May", "June", "July",
"August", "September", "October",
"November", "December"]
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Lists as Sequences
 Lists are mutable, meaning they can be 

changed. Strings can not be changed.
>>> myList = [34, 26, 15, 10]
>>> myList[2]
15
>>> myList[2] = 0
>>> myList
[34, 26, 0, 10]
>>> myString = "Hello World"
>>> myString[2]
'l'
>>> myString[2] = "p"

Traceback (most recent call last):
File "<pyshell#16>", line 1, in -toplevel-
myString[2] = "p"

TypeError: object doesn't support item assignment
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String Representation
 Inside the computer, strings are 

represented as sequences of 1’s and 
0’s, just like numbers.

 A string is stored as a sequence of 
binary numbers, one number per 
character.

 It doesn’t matter what value is assigned 
as long as it’s done consistently.
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String Representation
 In the early days of computers, each 

manufacturer used their own encoding 
of numbers for characters.

 ASCII system (American Standard Code 
for Information Interchange) uses 127 
bit codes

 Python supports Unicode (100,000+ 
characters)
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String Representation
 The ord function returns the numeric 

(ordinal) code of a single character.
 The chr function converts a numeric code to 

the corresponding character.
>>> ord("A")
65
>>> ord("a")
97
>>> chr(97)
'a'
>>> chr(65)
'A'
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Programming an Encoder
 Using ord and char we can convert a string 

into and out of numeric form.
 The encoding algorithm is simple:
get the message to encode
for each character in the message:

print the letter number of the character

 A for loop iterates over a sequence of 
objects, so the for loop looks like:
for ch in <string>
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Programming an Encoder
# text2numbers.py
#     A program to convert a textual message into a sequence of
#         numbers, utlilizing the underlying Unicode encoding.

def main():
print("This program converts a textual message into a sequence")
print ("of numbers representing the Unicode encoding of the message.\n")

# Get the message to encode
message = input("Please enter the message to encode: ")

print("\nHere are the Unicode codes:")

# Loop through the message and print out the Unicode values
for ch in message:

print(ord(ch),  end=" ")

print()  # blank line before prompt
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Programming a Decoder
 We now have a program to convert 

messages into a type of “code”, but it 
would be nice to have a program that 
could decode the message!

 The outline for a decoder:
get the sequence of numbers to decode
message = “”
for each number in the input:

convert the number to the appropriate 
character

add the character to the end of the message
print the message
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Programming a Decoder
 The variable message is an accumulator 

variable, initially set to the empty 
string, the string with no characters 
("").

 Each time through the loop, a number 
from the input is converted to the 
appropriate character and appended to 
the end of the accumulator.
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Programming a Decoder
 How do we get the sequence of 

numbers to decode?
 Read the input as a single string, then 

split it apart into substrings, each of 
which represents one number.
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Programming a Decoder
 The new algorithm

get the sequence of numbers as a string, inString
split inString into a sequence of smaller strings
message = ""
for each of the smaller strings:

change the string of digits into the number it represents
append the ASCII character for that number to message

print message

 Strings are objects and have useful methods 
associated with them



Python Programming, 3/e 41

Programming a Decoder
 One of these methods is split. This will 

split a string into substrings based on 
spaces.

>>> "Hello string methods!".split()

['Hello', 'string', 'methods!']
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Programming a Decoder
 Split can be used on characters other 

than space, by supplying the character 
as a parameter.

>>> "32,24,25,57".split(",")

['32', '24', '25', '57']
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Programming a Decoder
 We could get the x and y values of a point in 

a single input string by…
 Turning it into a list using the split method
 Indexing the individual component strings
 Convert these strings into their corresponding 

numbers using int or float
coords = input("Enter the point coordinates (x,y): ").split(",")
x,y = float(coords[0]), float(coords[1])
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Programming a Decoder
# numbers2text.py
#     A program to convert a sequence of Unicode numbers into
#         a string of text.

def main():
print ("This program converts a sequence of Unicode numbers into")
print ("the string of text that it represents.\n")

# Get the message to encode
inString = input("Please enter the Unicode-encoded message: ")

# Loop through each substring and build Unicde message
message = ""
for numStr in inString.split(i):

# convert the (sub)string to a number
codeNum = int(numStr)
# append character to message
message = message + chr(codeNum) 

print("\nThe decoded message is:", message)
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Programming a Decoder
 The split function produces a 

sequence of strings. numString gets 
each successive substring.

 Each time through the loop, the next 
substring is converted to the 
appropriate Unicode character and 
appended to the end of message.
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Programming a Decoder
-------------------------------------------------------------------------

This program converts a textual message into a sequence

of numbers representing the Unicode encoding of the message.

Please enter the message to encode: CS120 is fun!

Here are the Unicode codes:

67 83 49 50 48 32 105 115 32 102 117 110 33

--------------------------------------------------------------------------

This program converts a sequence of Unicode numbers into

the string of text that it represents.

Please enter the ASCII-encoded message: 67 83 49 50 48 32 105 115 32 102 117 110 33

The decoded message is: CS120 is fun!
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More String Methods
 There are a number of other string 

methods. Try them all!
 s.capitalize() – Copy of s with only the 

first character capitalized
 s.title() – Copy of s; first character of 

each word capitalized
 s.center(width) – Center s in a field of 

given width
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More String Methods
 s.count(sub) – Count the number of 

occurrences of sub in s
 s.find(sub) – Find the first position 

where sub occurs in s
 s.join(list) – Concatenate list of 

strings into one large string using s as 
separator.

 s.ljust(width) – Like center, but s is 
left-justified
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More String Methods
 s.lower() – Copy of s in all lowercase 

letters
 s.lstrip() – Copy of s with leading 

whitespace removed
 s.replace(oldsub, newsub) – Replace 

occurrences of oldsub in s with newsub
 s.rfind(sub) – Like find, but returns the 

right-most position
 s.rjust(width) – Like center, but s is 

right-justified
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More String Methods
 s.rstrip() – Copy of s with trailing 

whitespace removed
 s.split() – Split s into a list of 

substrings
 s.upper() – Copy of s; all characters 

converted to uppercase
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Lists Have Methods, Too
 The append method can be used to add 

an item at the end of a list.
squares = []
for x in range(1,101):

squares.append(x*x)

 We start with an empty list ([]) and each 
number from 1 to 100 is squared and 
appended to it ([1, 4, 9, …, 10000]).
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Lists Have Methods, Too
 We can use an alternative approach in 

the decoder program.
 The statement
message = message + chr(codeNum)

essentially creates a copy of the message 
so far and tacks one character on the end.

 As we build up the message, we keep 
recopying a longer and longer string just to 
add a single character at the end!
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Lists Have Methods, Too
 We can avoid this recopying by using 

lists of characters where each new 
character is appended to the end of 
the existing list.

 Since lists are mutable, the list is 
changed “in place” without having to 
copy the content over to a new object.
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Lists Have Methods, Too
 When done, we can use join to 

concatenate the characters into a 
string.
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Lists Have Methods, Too
# numbers2text2.py

#     A program to convert a sequence of Unicode numbers into

#         a string of text. Efficient version using a list accumulator.

def main():

print("This program converts a sequence of Unicode numbers into")

print("the string of text that it represents.\n")

# Get the message to encode

inString = input("Please enter the Unicode-encoded message: ")

# Loop through each substring and build Unicode message

chars = [] 

for numStr in inString.split():

codeNum = int(numStr)             # convert digits to a number

chars.append(chr(codeNum))         # accumulate new character

message = "".join(chars)

print("\nThe decoded message is:", message)
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From Encoding to Encryption
 The process of encoding information for the 

purpose of keeping it secret or transmitting it 
privately is called encryption.

 Cryptography is the study of encryption 
methods.

 Encryption is used when transmitting credit 
card and other personal information to a web 
site.
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From Encoding to Encryption
 Strings are represented as a sort of 

encoding problem, where each 
character in the string is represented as 
a number that’s stored in the computer.

 The code that is the mapping between 
character and number is an industry 
standard, so it’s not “secret”.
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From Encoding to Encryption
 The encoding/decoding programs we 

wrote use a substitution cipher, where 
each character of the original message, 
known as the plaintext, is replaced by a 
corresponding symbol in the cipher 
alphabet.

 The resulting code is known as the 
ciphertext.
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From Encoding to Encryption
 This type of code is relatively easy to 

break.
 Each letter is always encoded with the 

same symbol, so using statistical 
analysis on the frequency of the letters 
and trial and error, the original message 
can be determined.
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From Encoding to Encryption
 Modern encryption converts messages 

into numbers.
 Sophisticated mathematical formulas 

convert these numbers into new 
numbers – usually this transformation 
consists of combining the message with 
another value called the “key”
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From Encoding to Encryption
 To decrypt the message, the receiving end 

needs an appropriate key so the encoding 
can be reversed.

 In a private key system the same key is used 
for encrypting and decrypting messages. 
Everyone you know would need a copy of this 
key to communicate with you, but it needs to 
be kept a secret.
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From Encoding to Encryption
 In public key encryption, there are separate 

keys for encrypting and decrypting the 
message.

 In public key systems, the encryption key is 
made publicly available, while the decryption 
key is kept private.

 Anyone with the public key can send a 
message, but only the person who holds the 
private key (decryption key) can decrypt it.
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Input/Output as String 
Manipulation
 Often we will need to do some string 

operations to prepare our string data 
for output (“pretty it up”)

 Let’s say we want to enter a date in the 
format “05/24/2015” and output 
“May 24, 2015.” How could we do that?
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Input/Output as String 
Manipulation

Input the date in mm/dd/yyyy format (dateStr)

Split dateStr into month, day, and year strings

Convert the month string into a month number

Use the month number to lookup the month name

Create a new date string in the form “Month Day, Year”

Output the new date string
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Input/Output as String 
Manipulation
 The first two lines are easily 

implemented!
dateStr = input("Enter a date (mm/dd/yyyy): ")
monthStr, dayStr, yearStr = dateStr.split("/")

 The date is input as a string, and then 
“unpacked” into the three variables by 
splitting it at the slashes and using 
simultaneous assignment.
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Input/Output as String 
Manipulation
 Next step: Convert monthStr into a 

number
 We can use the int function on 

monthStr to convert "05", for example, 
into the integer 5. (int("05") = 5)
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Input/Output as String 
Manipulation
 Note: eval would work, but for the leading 0

>>> int("05")
5
>>> eval("05")
Traceback (most recent call last):

File "<pyshell#9>", line 1, in <module>
eval("05")
File "<string>", line 1
05

^
SyntaxError: invalid token

 This is historical baggage. A leading 0 used to 
be used for base 8 (octal) literals in Python.
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Input/Output as String 
Manipulation
months = ["January", "February", …, "December"]

monthStr = months[int(monthStr) – 1]

 Remember that since we start counting 
at 0, we need to subtract one from the 
month.

 Now let’s concatenate the output string 
together!
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Input/Output as String 
Manipulation

print ("The converted date is:", monthStr, dayStr+",", yearStr)

 Notice how the comma is appended to dayStr
with concatenation!

 >>> main()
Enter a date (mm/dd/yyyy): 01/23/2010
The converted date is: January 23, 2010
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Input/Output as String 
Manipulation
 Sometimes we want to convert a number into 

a string.
 We can use the str function.
>>> str(500)
'500'
>>> value = 3.14
>>> str(value)
'3.14'
>>> print("The value is", str(value) + ".")
The value is 3.14.
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Input/Output as String 
Manipulation

 If value is a string, we can concatenate a 
period onto the end of it.

 If value is an int, what happens?
>>> value = 3.14
>>> print("The value is", value + ".")
The value is

Traceback (most recent call last):
File "<pyshell#10>", line 1, in -toplevel-
print "The value is", value + "."

TypeError: unsupported operand type(s) for +: 'float' and 'str'
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Input/Output as String 
Manipulation
 We now have a complete set of type 

conversion operations:
Function Meaning
float(<expr>) Convert expr to a floating point value

int(<expr>) Convert expr to an integer value

str(<expr>) Return a string representation of expr

eval(<string>) Evaluate string as an expression
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String Formatting
 String formatting is an easy way to get 

beautiful output!
Change Counter

Please enter the count of each coin type.

Quarters: 6

Dimes: 0

Nickels: 0

Pennies: 0

The total value of your change is 1.5

 Shouldn’t that be more like $1.50??
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String Formatting
 We can format our output by modifying the 

print statement as follows:
print("The total value of your change is ${0:0.2f}".format(total))

 Now we get something like:
The total value of your change is $1.50

 Key is the string format method.
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String Formatting
 <template-string>.format(<values>)

 {} within the template-string mark 
“slots” into which the values are 
inserted.

 Each slot has description that includes 
format specifier telling Python how the 
value for the slot should appear.



Python Programming, 3/e 76

String Formatting
print("The total value of your change is ${0:0.2f}".format(total)

 The template contains a single slot with 
the description: 0:0.2f

 Form of description: 
<index>:<format-specifier>

 Index tells which parameter to insert into 
the slot. In this case, total.
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String Formatting
 The formatting specifier has the form: 
<width>.<precision><type>

 f means "fixed point" number 
 <width> tells us how many spaces to 

use to display the value. 0 means to 
use as much space as necessary.

 <precision> is the number of decimal 
places.
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String Formatting
>>> "Hello {0} {1}, you may have won ${2}" .format("Mr.", "Smith", 10000)
'Hello Mr. Smith, you may have won $10000'

>>> 'This int, {0:5}, was placed in a field of width 5'.format(7)
'This int,     7, was placed in a field of width 5'

>>> 'This int, {0:10}, was placed in a field of witdh 10'.format(10)
'This int,         10, was placed in a field of witdh 10'

>>> 'This float, {0:10.5}, has width 10 and precision 5.'.format(3.1415926)
'This float,    3.1416, has width 10 and precision 5.'

>>> 'This float, {0:10.5f},  is fixed at 5 decimal places.'.format(3.1415926)
'This float,   3.14159, has width 0 and precision 5.'

>>> "Compare {0} and {0:0.20}".format(3.14)
'Compare 3.14 and 3.1400000000000001243'
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String Formatting
 Numeric values are right-justified and strings 

are left- justified, by default.
 You can also specify a justification before the 

width.
>>> "left justification: {0:<5}.format("Hi!")

'left justification: Hi!  '

>>> "right justification: {0:>5}.format("Hi!")

'right justification:   Hi!'

>>> "centered: {0:^5}".format("Hi!")

'centered:  Hi! '
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Better Change Counter
 With what we know now about floating 

point numbers, we might be uneasy 
about using them in a money situation.

 One way around this problem is to keep 
track of money in cents using an int or 
long int, and convert it into dollars and 
cents when output.
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Better Change Counter
 If total is a value in cents (an int),
dollars = total//100
cents = total%100

 Cents is printed using width 0>2 to 
right-justify it with leading 0s (if 
necessary) into a field of width 2.

 Thus 5 cents becomes '05'
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Better Change Counter
# change2.py
#   A program to calculate the value of some change in dollars.
#   This version represents the total cash in cents.

def main():
print ("Change Counter\n")

print ("Please enter the count of each coin type.")
quarters = int(input("Quarters: "))
dimes = int(input("Dimes: "))
nickels = int(input("Nickels: "))
pennies = int(input("Pennies: "))
total = quarters * 25 + dimes * 10 + nickels * 5 + pennies 

print ("The total value of your change is ${0}.{1:0>2}" 
.format(total//100, total%100))
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Better Change Counter
>>> main()

Change Counter

Please enter the count of each coin type.

Quarters: 0

Dimes: 0

Nickels: 0

Pennies: 1

The total value of your change is $0.01

>>> main()

Change Counter

Please enter the count of each coin type.

Quarters: 12

Dimes: 1

Nickels: 0

Pennies: 4

The total value of your change is $3.14
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 A file is a sequence of data that is 
stored in secondary memory (disk 
drive).

 Files can contain any data type, but the 
easiest to work with are text.

 A file usually contains more than one 
line of text. 

 Python uses the standard newline 
character (\n) to mark line breaks.

Files: Multi-line Strings
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Multi-Line Strings
 Hello
World

Goodbye 32

 When stored in a file:
Hello\nWorld\n\nGoodbye 32\n
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Multi-Line Strings
 This is exactly the same thing as 

embedding \n in print statements.
 Remember, these special characters 

only affect things when printed. They 
don’t do anything during evaluation.
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File Processing
 The process of opening a file involves 

associating a file on disk with an object 
in memory.

 We can manipulate the file by 
manipulating this object.
 Read from the file
 Write to the file
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File Processing
 When done with the file, it needs to be 

closed. Closing the file causes any 
outstanding operations and other 
bookkeeping for the file to be 
completed.

 In some cases, not properly closing a 
file could result in data loss.
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File Processing
 Reading a file into a word processor

 File opened
 Contents read into RAM
 File closed
 Changes to the file are made to the copy 

stored in memory, not on the disk.
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File Processing
 Saving a word processing file

 The original file on the disk is reopened in 
a mode that will allow writing (this actually 
erases the old contents)

 File writing operations copy the version of 
the document in memory to the disk

 The file is closed 
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File Processing
 Working with text files in Python

 Associate a disk file with a file object using 
the open function
<filevar> = open(<name>, <mode>)

 name is a string with the actual file name 
on the disk. The mode is either ‘r’ or ‘w’
depending on whether we are reading or 
writing the file.

 infile = open("numbers.dat", "r")
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File Methods
 <file>.read() – returns the entire remaining 

contents of the file as a single (possibly large, 
multi-line) string

 <file>.readline() – returns the next line of 
the file. This is all text up to and including the 
next newline character

 <file>.readlines() – returns a list of the 
remaining lines in the file. Each list item is a 
single line including the newline characters.
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File Processing
# printfile.py
#     Prints a file to the screen.

def main():
fname = input("Enter filename: ")
infile = open(fname,'r')
data = infile.read()
print(data)

 First, prompt the user for a file name
 Open the file for reading
 The file is read as one string and stored in the 

variable data
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File Processing
 readline can be used to read the next 

line from a file, including the trailing 
newline character
infile = open(someFile, "r")
for i in range(5):

line = infile.readline()
print line[:-1]

 This reads the first 5 lines of a file
 Slicing is used to strip out the newline 

characters at the ends of the lines
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File Processing
 Another way to loop through the 

contents of a file is to read it in with 
readlines and then loop through the 
resulting list.
infile = open(someFile, "r")
for line in infile.readlines():

# Line processing here
infile.close()
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File Processing
 Python treats the file itself as a 

sequence of lines!
infile = open(someFile, "r")
for line in infile:

# process the line here
infile.close()
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File Processing
 Opening a file for writing prepares the 

file to receive data
 If you open an existing file for writing, 

you wipe out the file’s contents. If the 
named file does not exist, a new one is 
created.
outfile = open("mydata.out", "w")
print(<expressions>, file=outfile)
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Example Program:
Batch Usernames
 Batch mode processing is where 

program input and output are done 
through files (the program is not 
designed to be interactive)

 Let’s create usernames for a computer 
system where the first and last names 
come from an input file.
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Example Program:
Batch Usernames

# userfile.py
#    Program to create a file of usernames in batch mode.

def main():
print ("This program creates a file of usernames from a")
print ("file of names.")

# get the file names
infileName = input("What file are the names in? ")
outfileName = input("What file should the usernames go in? ")

# open the files
infile = open(infileName, 'r')
outfile = open(outfileName, 'w')
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Example Program:
Batch Usernames

# process each line of the input file
for line in infile:

# get the first and last names from line
first, last = line.split()
# create a username
uname = (first[0]+last[:7]).lower()
# write it to the output file
print(uname, file=outfile)

# close both files
infile.close()
outfile.close()

print("Usernames have been written to", outfileName)
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Example Program:
Batch Usernames
 Things to note:

 It’s not unusual for programs to have multiple 
files open for reading and writing at the same 
time.

 The lower method is used to convert the names 
into all lower case, in the event the names are 
mixed upper and lower case.
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File Dialogs
 A common problem with file manipulation 

programs is figuring out exactly how to 
specify the file that you want to use.

 With no additional information, Python will 
look in the “current” directory for files.

 Most modern operating systems use file 
names having a form like <name>.<type> 
where type is a short indicator of what the 
file contains, e.g. txt (text file).
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File Dialogs
 One problem: some operating systems 

(Windows and MacOS) by default only show 
the part of the name preceeding the period, 
so it can be hard to figure out the complete 
file name.

 It’s even harder when the file is located 
somewhere other than the current directory 
in your secondary memory! Then we will 
need the complete path in addition to the file 
name.
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File Dialogs
 On Windows, the complete file name may 

look like
C:/users/susan/Documents/Python_Programs/users.txt

 The solution? Allow the users to browse the 
file system visually and navigate to the file.

 This is a common enough operation that 
most operating systems provide a standard 
way to do this, usually incorporating a dialog 
box.
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File Dialogs
 To ask the user for the name of a file to 

open, you can use askopenfilename from 
tkinter.filedialog.

from tkinter.filedialog import 
askopenfilename

…

infileName = aksopenfilename()

infile = open(infileName, "r")
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File Dialogs
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File Dialogs
 When the user clicks the “Open” button, the 

complete path name of the file is returned as 
a string and saved into the variable 
infileName.

 If the user clicks “Cancel”, the function 
returns an empty string.
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File Dialogs
 To ask the user for the name of a file to 

save, you can use asksaveasfilename
from tkinter.filedialog.

from tkinter.filedialog import 
asksaveasfilename

…

outfileName = asksaveasfilename()

outfile = open(outfileName, "w")
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File Dialogs
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