
Python Programming, 3/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 5
Sequences: Strings, Lists, and Files

Python Programming, 3/e 2

Objectives
 To understand the string data type and

how strings are represented in the
computer.

 To become familiar with various
operations that can be performed on
strings through built-in functions and
string methods.

Python Programming, 3/e 3

Objectives
 To understand the basic idea of sequences

and indexing as they apply to Python strings
and lists.

 To be able to apply string formatting to
produce attractive, informative program
output.

 To understand basic file processing concepts
and techniques for reading and writing text
files in Python.

Python Programming, 3/e 4

Objectives
 To understand basic concepts of

cryptography.
 To be able to understand and write

programs that process textual
information.

Python Programming, 3/e 5

The String Data Type
 The most common use of personal

computers is word processing.
 Text is represented in programs by the

string data type.
 A string is a sequence of characters

enclosed within quotation marks (") or
apostrophes (').

Python Programming, 3/e 6

The String Data Type
>>> str1="Hello"

>>> str2='spam'

>>> print(str1, str2)

Hello spam

>>> type(str1)

<class 'str'>

>>> type(str2)

<class 'str'>

Python Programming, 3/e 7

The String Data Type
 Getting a string as input

>>> firstName = input("Please enter your name: ")

Please enter your name: John

>>> print("Hello", firstName)

Hello John

 Notice that the input is not evaluated. We
want to store the typed characters, not to
evaluate them as a Python expression.

Python Programming, 3/e 8

The String Data Type
 We can access the individual characters

in a string through indexing.
 The positions in a string are numbered

from the left, starting with 0.
 The general form is <string>[<expr>],

where the value of expr determines
which character is selected from the
string.

Python Programming, 3/e 9

The String Data Type

>>> greet = "Hello Bob"

>>> greet[0]

'H'

>>> print(greet[0], greet[2], greet[4])

H l o

>>> x = 8

>>> print(greet[x - 2])

B

H e l l o B o b

0 1 2 3 4 5 6 7 8

Python Programming, 3/e 10

The String Data Type

 In a string of n characters, the last character
is at position n-1 since we start counting with
0.

 We can index from the right side using
negative indexes.

>>> greet[-1]
'b'
>>> greet[-3]
'B'

H e l l o B o b

0 1 2 3 4 5 6 7 8

Python Programming, 3/e 11

The String Data Type
 Indexing returns a string containing a

single character from a larger string.
 We can also access a contiguous

sequence of characters, called a
substring, through a process called
slicing.

Python Programming, 3/e 12

The String Data Type
 Slicing:
<string>[<start>:<end>]

 start and end should both be ints
 The slice contains the substring

beginning at position start and runs up
to but doesn’t include the position
end.

Python Programming, 3/e 13

The String Data Type

>>> greet[0:3]
'Hel'
>>> greet[5:9]
' Bob'
>>> greet[:5]
'Hello'
>>> greet[5:]
' Bob'
>>> greet[:]
'Hello Bob'

H e l l o B o b

0 1 2 3 4 5 6 7 8

Python Programming, 3/e 14

The String Data Type
 If either expression is missing, then the

start or the end of the string are used.
 Can we put two strings together into a

longer string?
 Concatenation “glues” two strings

together (+)
 Repetition builds up a string by multiple

concatenations of a string with itself (*)

Python Programming, 3/e 15

The String Data Type
 The function len will return the length of a

string.
>>> "spam" + "eggs"
'spameggs'
>>> "Spam" + "And" + "Eggs"
'SpamAndEggs'
>>> 3 * "spam"
'spamspamspam'
>>> "spam" * 5
'spamspamspamspamspam'
>>> (3 * "spam") + ("eggs" * 5)
'spamspamspameggseggseggseggseggs'

Python Programming, 3/e 16

The String Data Type
>>> len("spam")

4

>>> for ch in "Spam!":

print (ch, end=" ")

S p a m !

Python Programming, 3/e 17

The String Data Type
Operator Meaning

+ Concatenation
* Repetition

<string>[] Indexing
<string>[:] Slicing

len(<string>) Length
for <var> in <string> Iteration through characters

Python Programming, 3/e 18

Simple String Processing

 Usernames on a computer system
 First initial, first seven characters of last name

get user’s first and last names

first = input("Please enter your first name (all lowercase): ")

last = input("Please enter your last name (all lowercase): ")

concatenate first initial with 7 chars of last name

uname = first[0] + last[:7]

Python Programming, 3/e 19

Simple String Processing
>>>

Please enter your first name (all lowercase): john

Please enter your last name (all lowercase): doe

uname = jdoe

>>>

Please enter your first name (all lowercase): donna

Please enter your last name (all lowercase): rostenkowski

uname = drostenk

Python Programming, 3/e 20

Simple String Processing
 Another use – converting an int that

stands for the month into the three
letter abbreviation for that month.

 Store all the names in one big string:
“JanFebMarAprMayJunJulAugSepOctNovDec”

 Use the month number as an index for
slicing this string:
monthAbbrev = months[pos:pos+3]

Python Programming, 3/e 21

Simple String Processing
Month Number Position

Jan 1 0
Feb 2 3
Mar 3 6
Apr 4 9

 To get the correct position, subtract one
from the month number and multiply by
three

Python Programming, 3/e 22

Simple String Processing
month.py
A program to print the abbreviation of a month, given its number

def main():

months is used as a lookup table
months = "JanFebMarAprMayJunJulAugSepOctNovDec"

n = int(input("Enter a month number (1-12): "))

compute starting position of month n in months
pos = (n-1) * 3

Grab the appropriate slice from months
monthAbbrev = months[pos:pos+3]

print the result
print ("The month abbreviation is", monthAbbrev + ".")

Python Programming, 3/e 23

Simple String Processing
>>> main()

Enter a month number (1-12): 1

The month abbreviation is Jan.

>>> main()

Enter a month number (1-12): 12

The month abbreviation is Dec.

 One weakness – this method only works
where the potential outputs all have the same
length.

 How could you handle spelling out the
months?

Python Programming, 3/e 24

Lists as Sequences
 It turns out that strings are really a special

kind of sequence, so these operations also
apply to sequences!

>>> [1,2] + [3,4]
[1, 2, 3, 4]
>>> [1,2]*3
[1, 2, 1, 2, 1, 2]
>>> grades = ['A', 'B', 'C', 'D', 'F']
>>> grades[0]
'A'
>>> grades[2:4]
['C', 'D']
>>> len(grades)
5

Python Programming, 3/e 25

Lists as Sequences
 Strings are always sequences of

characters, but lists can be sequences
of arbitrary values.

 Lists can have numbers, strings, or
both!

myList = [1, "Spam ", 4, "U"]

Python Programming, 3/e 26

Lists as Sequences
 We can use the idea of a list to make

our previous month program even
simpler!

 We change the lookup table for months
to a list:

months = ["Jan", "Feb", "Mar", "Apr", "May",
"Jun", "Jul", "Aug", "Sep", "Oct", "Nov",
"Dec"]

Python Programming, 3/e 27

Lists as Sequences
 To get the months out of the sequence,

do this:
monthAbbrev = months[n-1]

Rather than this:
monthAbbrev = months[pos:pos+3]

Python Programming, 3/e 28

Lists as Sequences
month2.py
A program to print the month name, given it's number.
This version uses a list as a lookup table.

def main():

months is a list used as a lookup table
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

n = int(input("Enter a month number (1-12): "))

print ("The month abbreviation is", months[n-1] + ".")

 Note that the months line overlaps a line.
Python knows that the expression isn’t
complete until the closing ‘]’ is encountered.

Python Programming, 3/e 29

Lists as Sequences
month2.py
A program to print the month name, given it's number.
This version uses a list as a lookup table.

def main():

months is a list used as a lookup table
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

n = int(input("Enter a month number (1-12): "))

print ("The month abbreviation is", months[n-1] + ".")

 Since the list is indexed starting from 0, the
n-1 calculation is straight-forward enough to
put in the print statement without needing a
separate step.

Python Programming, 3/e 30

Lists as Sequences
 This version of the program is easy to

extend to print out the whole month
name rather than an abbreviation!

months = ["January", "February", "March",
"April", "May", "June", "July",
"August", "September", "October",
"November", "December"]

Python Programming, 3/e 31

Lists as Sequences
 Lists are mutable, meaning they can be

changed. Strings can not be changed.
>>> myList = [34, 26, 15, 10]
>>> myList[2]
15
>>> myList[2] = 0
>>> myList
[34, 26, 0, 10]
>>> myString = "Hello World"
>>> myString[2]
'l'
>>> myString[2] = "p"

Traceback (most recent call last):
File "<pyshell#16>", line 1, in -toplevel-
myString[2] = "p"

TypeError: object doesn't support item assignment

Python Programming, 3/e 32

String Representation
 Inside the computer, strings are

represented as sequences of 1’s and
0’s, just like numbers.

 A string is stored as a sequence of
binary numbers, one number per
character.

 It doesn’t matter what value is assigned
as long as it’s done consistently.

Python Programming, 3/e 33

String Representation
 In the early days of computers, each

manufacturer used their own encoding
of numbers for characters.

 ASCII system (American Standard Code
for Information Interchange) uses 127
bit codes

 Python supports Unicode (100,000+
characters)

Python Programming, 3/e 34

String Representation
 The ord function returns the numeric

(ordinal) code of a single character.
 The chr function converts a numeric code to

the corresponding character.
>>> ord("A")
65
>>> ord("a")
97
>>> chr(97)
'a'
>>> chr(65)
'A'

Python Programming, 3/e 35

Programming an Encoder
 Using ord and char we can convert a string

into and out of numeric form.
 The encoding algorithm is simple:
get the message to encode
for each character in the message:

print the letter number of the character

 A for loop iterates over a sequence of
objects, so the for loop looks like:
for ch in <string>

Python Programming, 3/e 36

Programming an Encoder
text2numbers.py
A program to convert a textual message into a sequence of
numbers, utlilizing the underlying Unicode encoding.

def main():
print("This program converts a textual message into a sequence")
print ("of numbers representing the Unicode encoding of the message.\n")

Get the message to encode
message = input("Please enter the message to encode: ")

print("\nHere are the Unicode codes:")

Loop through the message and print out the Unicode values
for ch in message:

print(ord(ch), end=" ")

print() # blank line before prompt

Python Programming, 3/e 37

Programming a Decoder
 We now have a program to convert

messages into a type of “code”, but it
would be nice to have a program that
could decode the message!

 The outline for a decoder:
get the sequence of numbers to decode
message = “”
for each number in the input:

convert the number to the appropriate
character

add the character to the end of the message
print the message

Python Programming, 3/e 38

Programming a Decoder
 The variable message is an accumulator

variable, initially set to the empty
string, the string with no characters
("").

 Each time through the loop, a number
from the input is converted to the
appropriate character and appended to
the end of the accumulator.

Python Programming, 3/e 39

Programming a Decoder
 How do we get the sequence of

numbers to decode?
 Read the input as a single string, then

split it apart into substrings, each of
which represents one number.

Python Programming, 3/e 40

Programming a Decoder
 The new algorithm

get the sequence of numbers as a string, inString
split inString into a sequence of smaller strings
message = ""
for each of the smaller strings:

change the string of digits into the number it represents
append the ASCII character for that number to message

print message

 Strings are objects and have useful methods
associated with them

Python Programming, 3/e 41

Programming a Decoder
 One of these methods is split. This will

split a string into substrings based on
spaces.

>>> "Hello string methods!".split()

['Hello', 'string', 'methods!']

Python Programming, 3/e 42

Programming a Decoder
 Split can be used on characters other

than space, by supplying the character
as a parameter.

>>> "32,24,25,57".split(",")

['32', '24', '25', '57']

Python Programming, 3/e 43

Programming a Decoder
 We could get the x and y values of a point in

a single input string by…
 Turning it into a list using the split method
 Indexing the individual component strings
 Convert these strings into their corresponding

numbers using int or float
coords = input("Enter the point coordinates (x,y): ").split(",")
x,y = float(coords[0]), float(coords[1])

Python Programming, 3/e 44

Programming a Decoder
numbers2text.py
A program to convert a sequence of Unicode numbers into
a string of text.

def main():
print ("This program converts a sequence of Unicode numbers into")
print ("the string of text that it represents.\n")

Get the message to encode
inString = input("Please enter the Unicode-encoded message: ")

Loop through each substring and build Unicde message
message = ""
for numStr in inString.split(i):

convert the (sub)string to a number
codeNum = int(numStr)
append character to message
message = message + chr(codeNum)

print("\nThe decoded message is:", message)

Python Programming, 3/e 45

Programming a Decoder
 The split function produces a

sequence of strings. numString gets
each successive substring.

 Each time through the loop, the next
substring is converted to the
appropriate Unicode character and
appended to the end of message.

Python Programming, 3/e 46

Programming a Decoder

This program converts a textual message into a sequence

of numbers representing the Unicode encoding of the message.

Please enter the message to encode: CS120 is fun!

Here are the Unicode codes:

67 83 49 50 48 32 105 115 32 102 117 110 33

--

This program converts a sequence of Unicode numbers into

the string of text that it represents.

Please enter the ASCII-encoded message: 67 83 49 50 48 32 105 115 32 102 117 110 33

The decoded message is: CS120 is fun!

Python Programming, 3/e 47

More String Methods
 There are a number of other string

methods. Try them all!
 s.capitalize() – Copy of s with only the

first character capitalized
 s.title() – Copy of s; first character of

each word capitalized
 s.center(width) – Center s in a field of

given width

Python Programming, 3/e 48

More String Methods
 s.count(sub) – Count the number of

occurrences of sub in s
 s.find(sub) – Find the first position

where sub occurs in s
 s.join(list) – Concatenate list of

strings into one large string using s as
separator.

 s.ljust(width) – Like center, but s is
left-justified

Python Programming, 3/e 49

More String Methods
 s.lower() – Copy of s in all lowercase

letters
 s.lstrip() – Copy of s with leading

whitespace removed
 s.replace(oldsub, newsub) – Replace

occurrences of oldsub in s with newsub
 s.rfind(sub) – Like find, but returns the

right-most position
 s.rjust(width) – Like center, but s is

right-justified

Python Programming, 3/e 50

More String Methods
 s.rstrip() – Copy of s with trailing

whitespace removed
 s.split() – Split s into a list of

substrings
 s.upper() – Copy of s; all characters

converted to uppercase

Python Programming, 3/e 51

Lists Have Methods, Too
 The append method can be used to add

an item at the end of a list.
squares = []
for x in range(1,101):

squares.append(x*x)

 We start with an empty list ([]) and each
number from 1 to 100 is squared and
appended to it ([1, 4, 9, …, 10000]).

Python Programming, 3/e 52

Lists Have Methods, Too
 We can use an alternative approach in

the decoder program.
 The statement
message = message + chr(codeNum)

essentially creates a copy of the message
so far and tacks one character on the end.

 As we build up the message, we keep
recopying a longer and longer string just to
add a single character at the end!

Python Programming, 3/e 53

Lists Have Methods, Too
 We can avoid this recopying by using

lists of characters where each new
character is appended to the end of
the existing list.

 Since lists are mutable, the list is
changed “in place” without having to
copy the content over to a new object.

Python Programming, 3/e 54

Lists Have Methods, Too
 When done, we can use join to

concatenate the characters into a
string.

Python Programming, 3/e 55

Lists Have Methods, Too
numbers2text2.py

A program to convert a sequence of Unicode numbers into

a string of text. Efficient version using a list accumulator.

def main():

print("This program converts a sequence of Unicode numbers into")

print("the string of text that it represents.\n")

Get the message to encode

inString = input("Please enter the Unicode-encoded message: ")

Loop through each substring and build Unicode message

chars = []

for numStr in inString.split():

codeNum = int(numStr) # convert digits to a number

chars.append(chr(codeNum)) # accumulate new character

message = "".join(chars)

print("\nThe decoded message is:", message)

Python Programming, 3/e 56

From Encoding to Encryption
 The process of encoding information for the

purpose of keeping it secret or transmitting it
privately is called encryption.

 Cryptography is the study of encryption
methods.

 Encryption is used when transmitting credit
card and other personal information to a web
site.

Python Programming, 3/e 57

From Encoding to Encryption
 Strings are represented as a sort of

encoding problem, where each
character in the string is represented as
a number that’s stored in the computer.

 The code that is the mapping between
character and number is an industry
standard, so it’s not “secret”.

Python Programming, 3/e 58

From Encoding to Encryption
 The encoding/decoding programs we

wrote use a substitution cipher, where
each character of the original message,
known as the plaintext, is replaced by a
corresponding symbol in the cipher
alphabet.

 The resulting code is known as the
ciphertext.

Python Programming, 3/e 59

From Encoding to Encryption
 This type of code is relatively easy to

break.
 Each letter is always encoded with the

same symbol, so using statistical
analysis on the frequency of the letters
and trial and error, the original message
can be determined.

Python Programming, 3/e 60

From Encoding to Encryption
 Modern encryption converts messages

into numbers.
 Sophisticated mathematical formulas

convert these numbers into new
numbers – usually this transformation
consists of combining the message with
another value called the “key”

Python Programming, 3/e 61

From Encoding to Encryption
 To decrypt the message, the receiving end

needs an appropriate key so the encoding
can be reversed.

 In a private key system the same key is used
for encrypting and decrypting messages.
Everyone you know would need a copy of this
key to communicate with you, but it needs to
be kept a secret.

Python Programming, 3/e 62

From Encoding to Encryption
 In public key encryption, there are separate

keys for encrypting and decrypting the
message.

 In public key systems, the encryption key is
made publicly available, while the decryption
key is kept private.

 Anyone with the public key can send a
message, but only the person who holds the
private key (decryption key) can decrypt it.

Python Programming, 3/e 63

Input/Output as String
Manipulation
 Often we will need to do some string

operations to prepare our string data
for output (“pretty it up”)

 Let’s say we want to enter a date in the
format “05/24/2015” and output
“May 24, 2015.” How could we do that?

Python Programming, 3/e 64

Input/Output as String
Manipulation

Input the date in mm/dd/yyyy format (dateStr)

Split dateStr into month, day, and year strings

Convert the month string into a month number

Use the month number to lookup the month name

Create a new date string in the form “Month Day, Year”

Output the new date string

Python Programming, 3/e 65

Input/Output as String
Manipulation
 The first two lines are easily

implemented!
dateStr = input("Enter a date (mm/dd/yyyy): ")
monthStr, dayStr, yearStr = dateStr.split("/")

 The date is input as a string, and then
“unpacked” into the three variables by
splitting it at the slashes and using
simultaneous assignment.

Python Programming, 3/e 66

Input/Output as String
Manipulation
 Next step: Convert monthStr into a

number
 We can use the int function on

monthStr to convert "05", for example,
into the integer 5. (int("05") = 5)

Python Programming, 3/e 67

Input/Output as String
Manipulation
 Note: eval would work, but for the leading 0

>>> int("05")
5
>>> eval("05")
Traceback (most recent call last):

File "<pyshell#9>", line 1, in <module>
eval("05")
File "<string>", line 1
05

^
SyntaxError: invalid token

 This is historical baggage. A leading 0 used to
be used for base 8 (octal) literals in Python.

Python Programming, 3/e 68

Input/Output as String
Manipulation
months = ["January", "February", …, "December"]

monthStr = months[int(monthStr) – 1]

 Remember that since we start counting
at 0, we need to subtract one from the
month.

 Now let’s concatenate the output string
together!

Python Programming, 3/e 69

Input/Output as String
Manipulation

print ("The converted date is:", monthStr, dayStr+",", yearStr)

 Notice how the comma is appended to dayStr
with concatenation!

 >>> main()
Enter a date (mm/dd/yyyy): 01/23/2010
The converted date is: January 23, 2010

Python Programming, 3/e 70

Input/Output as String
Manipulation
 Sometimes we want to convert a number into

a string.
 We can use the str function.
>>> str(500)
'500'
>>> value = 3.14
>>> str(value)
'3.14'
>>> print("The value is", str(value) + ".")
The value is 3.14.

Python Programming, 3/e 71

Input/Output as String
Manipulation

 If value is a string, we can concatenate a
period onto the end of it.

 If value is an int, what happens?
>>> value = 3.14
>>> print("The value is", value + ".")
The value is

Traceback (most recent call last):
File "<pyshell#10>", line 1, in -toplevel-
print "The value is", value + "."

TypeError: unsupported operand type(s) for +: 'float' and 'str'

Python Programming, 3/e 72

Input/Output as String
Manipulation
 We now have a complete set of type

conversion operations:
Function Meaning
float(<expr>) Convert expr to a floating point value

int(<expr>) Convert expr to an integer value

str(<expr>) Return a string representation of expr

eval(<string>) Evaluate string as an expression

Python Programming, 3/e 73

String Formatting
 String formatting is an easy way to get

beautiful output!
Change Counter

Please enter the count of each coin type.

Quarters: 6

Dimes: 0

Nickels: 0

Pennies: 0

The total value of your change is 1.5

 Shouldn’t that be more like $1.50??

Python Programming, 3/e 74

String Formatting
 We can format our output by modifying the

print statement as follows:
print("The total value of your change is ${0:0.2f}".format(total))

 Now we get something like:
The total value of your change is $1.50

 Key is the string format method.

Python Programming, 3/e 75

String Formatting
 <template-string>.format(<values>)

 {} within the template-string mark
“slots” into which the values are
inserted.

 Each slot has description that includes
format specifier telling Python how the
value for the slot should appear.

Python Programming, 3/e 76

String Formatting
print("The total value of your change is ${0:0.2f}".format(total)

 The template contains a single slot with
the description: 0:0.2f

 Form of description:
<index>:<format-specifier>

 Index tells which parameter to insert into
the slot. In this case, total.

Python Programming, 3/e 77

String Formatting
 The formatting specifier has the form:
<width>.<precision><type>

 f means "fixed point" number
 <width> tells us how many spaces to

use to display the value. 0 means to
use as much space as necessary.

 <precision> is the number of decimal
places.

Python Programming, 3/e 78

String Formatting
>>> "Hello {0} {1}, you may have won ${2}" .format("Mr.", "Smith", 10000)
'Hello Mr. Smith, you may have won $10000'

>>> 'This int, {0:5}, was placed in a field of width 5'.format(7)
'This int, 7, was placed in a field of width 5'

>>> 'This int, {0:10}, was placed in a field of witdh 10'.format(10)
'This int, 10, was placed in a field of witdh 10'

>>> 'This float, {0:10.5}, has width 10 and precision 5.'.format(3.1415926)
'This float, 3.1416, has width 10 and precision 5.'

>>> 'This float, {0:10.5f}, is fixed at 5 decimal places.'.format(3.1415926)
'This float, 3.14159, has width 0 and precision 5.'

>>> "Compare {0} and {0:0.20}".format(3.14)
'Compare 3.14 and 3.1400000000000001243'

Python Programming, 3/e 79

String Formatting
 Numeric values are right-justified and strings

are left- justified, by default.
 You can also specify a justification before the

width.
>>> "left justification: {0:<5}.format("Hi!")

'left justification: Hi! '

>>> "right justification: {0:>5}.format("Hi!")

'right justification: Hi!'

>>> "centered: {0:^5}".format("Hi!")

'centered: Hi! '

Python Programming, 3/e 80

Better Change Counter
 With what we know now about floating

point numbers, we might be uneasy
about using them in a money situation.

 One way around this problem is to keep
track of money in cents using an int or
long int, and convert it into dollars and
cents when output.

Python Programming, 3/e 81

Better Change Counter
 If total is a value in cents (an int),
dollars = total//100
cents = total%100

 Cents is printed using width 0>2 to
right-justify it with leading 0s (if
necessary) into a field of width 2.

 Thus 5 cents becomes '05'

Python Programming, 3/e 82

Better Change Counter
change2.py
A program to calculate the value of some change in dollars.
This version represents the total cash in cents.

def main():
print ("Change Counter\n")

print ("Please enter the count of each coin type.")
quarters = int(input("Quarters: "))
dimes = int(input("Dimes: "))
nickels = int(input("Nickels: "))
pennies = int(input("Pennies: "))
total = quarters * 25 + dimes * 10 + nickels * 5 + pennies

print ("The total value of your change is ${0}.{1:0>2}"
.format(total//100, total%100))

Python Programming, 3/e 83

Better Change Counter
>>> main()

Change Counter

Please enter the count of each coin type.

Quarters: 0

Dimes: 0

Nickels: 0

Pennies: 1

The total value of your change is $0.01

>>> main()

Change Counter

Please enter the count of each coin type.

Quarters: 12

Dimes: 1

Nickels: 0

Pennies: 4

The total value of your change is $3.14

Python Programming, 3/e 84

 A file is a sequence of data that is
stored in secondary memory (disk
drive).

 Files can contain any data type, but the
easiest to work with are text.

 A file usually contains more than one
line of text.

 Python uses the standard newline
character (\n) to mark line breaks.

Files: Multi-line Strings

Python Programming, 3/e 85

Multi-Line Strings
 Hello
World

Goodbye 32

 When stored in a file:
Hello\nWorld\n\nGoodbye 32\n

Python Programming, 3/e 86

Multi-Line Strings
 This is exactly the same thing as

embedding \n in print statements.
 Remember, these special characters

only affect things when printed. They
don’t do anything during evaluation.

Python Programming, 3/e 87

File Processing
 The process of opening a file involves

associating a file on disk with an object
in memory.

 We can manipulate the file by
manipulating this object.
 Read from the file
 Write to the file

Python Programming, 3/e 88

File Processing
 When done with the file, it needs to be

closed. Closing the file causes any
outstanding operations and other
bookkeeping for the file to be
completed.

 In some cases, not properly closing a
file could result in data loss.

Python Programming, 3/e 89

File Processing
 Reading a file into a word processor

 File opened
 Contents read into RAM
 File closed
 Changes to the file are made to the copy

stored in memory, not on the disk.

Python Programming, 3/e 90

File Processing
 Saving a word processing file

 The original file on the disk is reopened in
a mode that will allow writing (this actually
erases the old contents)

 File writing operations copy the version of
the document in memory to the disk

 The file is closed

Python Programming, 3/e 91

File Processing
 Working with text files in Python

 Associate a disk file with a file object using
the open function
<filevar> = open(<name>, <mode>)

 name is a string with the actual file name
on the disk. The mode is either ‘r’ or ‘w’
depending on whether we are reading or
writing the file.

 infile = open("numbers.dat", "r")

Python Programming, 3/e 92

File Methods
 <file>.read() – returns the entire remaining

contents of the file as a single (possibly large,
multi-line) string

 <file>.readline() – returns the next line of
the file. This is all text up to and including the
next newline character

 <file>.readlines() – returns a list of the
remaining lines in the file. Each list item is a
single line including the newline characters.

Python Programming, 3/e 93

File Processing
printfile.py
Prints a file to the screen.

def main():
fname = input("Enter filename: ")
infile = open(fname,'r')
data = infile.read()
print(data)

 First, prompt the user for a file name
 Open the file for reading
 The file is read as one string and stored in the

variable data

Python Programming, 3/e 94

File Processing
 readline can be used to read the next

line from a file, including the trailing
newline character
infile = open(someFile, "r")
for i in range(5):

line = infile.readline()
print line[:-1]

 This reads the first 5 lines of a file
 Slicing is used to strip out the newline

characters at the ends of the lines

Python Programming, 3/e 95

File Processing
 Another way to loop through the

contents of a file is to read it in with
readlines and then loop through the
resulting list.
infile = open(someFile, "r")
for line in infile.readlines():

Line processing here
infile.close()

Python Programming, 3/e 96

File Processing
 Python treats the file itself as a

sequence of lines!
infile = open(someFile, "r")
for line in infile:

process the line here
infile.close()

Python Programming, 3/e 97

File Processing
 Opening a file for writing prepares the

file to receive data
 If you open an existing file for writing,

you wipe out the file’s contents. If the
named file does not exist, a new one is
created.
outfile = open("mydata.out", "w")
print(<expressions>, file=outfile)

Python Programming, 3/e 98

Example Program:
Batch Usernames
 Batch mode processing is where

program input and output are done
through files (the program is not
designed to be interactive)

 Let’s create usernames for a computer
system where the first and last names
come from an input file.

Python Programming, 3/e 99

Example Program:
Batch Usernames

userfile.py
Program to create a file of usernames in batch mode.

def main():
print ("This program creates a file of usernames from a")
print ("file of names.")

get the file names
infileName = input("What file are the names in? ")
outfileName = input("What file should the usernames go in? ")

open the files
infile = open(infileName, 'r')
outfile = open(outfileName, 'w')

Python Programming, 3/e 100

Example Program:
Batch Usernames

process each line of the input file
for line in infile:

get the first and last names from line
first, last = line.split()
create a username
uname = (first[0]+last[:7]).lower()
write it to the output file
print(uname, file=outfile)

close both files
infile.close()
outfile.close()

print("Usernames have been written to", outfileName)

Python Programming, 3/e 101

Example Program:
Batch Usernames
 Things to note:

 It’s not unusual for programs to have multiple
files open for reading and writing at the same
time.

 The lower method is used to convert the names
into all lower case, in the event the names are
mixed upper and lower case.

Python Programming, 3/e 102

File Dialogs
 A common problem with file manipulation

programs is figuring out exactly how to
specify the file that you want to use.

 With no additional information, Python will
look in the “current” directory for files.

 Most modern operating systems use file
names having a form like <name>.<type>
where type is a short indicator of what the
file contains, e.g. txt (text file).

Python Programming, 3/e 103

File Dialogs
 One problem: some operating systems

(Windows and MacOS) by default only show
the part of the name preceeding the period,
so it can be hard to figure out the complete
file name.

 It’s even harder when the file is located
somewhere other than the current directory
in your secondary memory! Then we will
need the complete path in addition to the file
name.

Python Programming, 3/e 104

File Dialogs
 On Windows, the complete file name may

look like
C:/users/susan/Documents/Python_Programs/users.txt

 The solution? Allow the users to browse the
file system visually and navigate to the file.

 This is a common enough operation that
most operating systems provide a standard
way to do this, usually incorporating a dialog
box.

Python Programming, 3/e 105

File Dialogs
 To ask the user for the name of a file to

open, you can use askopenfilename from
tkinter.filedialog.

from tkinter.filedialog import
askopenfilename

…

infileName = aksopenfilename()

infile = open(infileName, "r")

Python Programming, 3/e 106

File Dialogs

Python Programming, 3/e 107

File Dialogs
 When the user clicks the “Open” button, the

complete path name of the file is returned as
a string and saved into the variable
infileName.

 If the user clicks “Cancel”, the function
returns an empty string.

Python Programming, 3/e 108

File Dialogs
 To ask the user for the name of a file to

save, you can use asksaveasfilename
from tkinter.filedialog.

from tkinter.filedialog import
asksaveasfilename

…

outfileName = asksaveasfilename()

outfile = open(outfileName, "w")

Python Programming, 3/e 109

File Dialogs

	Python Programming:�An Introduction to�Computer Science
	Objectives
	Objectives
	Objectives
	The String Data Type
	The String Data Type
	The String Data Type
	The String Data Type
	The String Data Type
	The String Data Type
	The String Data Type
	The String Data Type
	The String Data Type
	The String Data Type
	The String Data Type
	The String Data Type
	The String Data Type
	Simple String Processing
	Simple String Processing
	Simple String Processing
	Simple String Processing
	Simple String Processing
	Simple String Processing
	Lists as Sequences
	Lists as Sequences
	Lists as Sequences
	Lists as Sequences
	Lists as Sequences
	Lists as Sequences
	Lists as Sequences
	Lists as Sequences
	String Representation
	String Representation
	String Representation
	Programming an Encoder
	Programming an Encoder
	Programming a Decoder
	Programming a Decoder
	Programming a Decoder
	Programming a Decoder
	Programming a Decoder
	Programming a Decoder
	Programming a Decoder
	Programming a Decoder
	Programming a Decoder
	Programming a Decoder
	More String Methods
	More String Methods
	More String Methods
	More String Methods
	Lists Have Methods, Too
	Lists Have Methods, Too
	Lists Have Methods, Too
	Lists Have Methods, Too
	Lists Have Methods, Too
	From Encoding to Encryption
	From Encoding to Encryption
	From Encoding to Encryption
	From Encoding to Encryption
	From Encoding to Encryption
	From Encoding to Encryption
	From Encoding to Encryption
	Input/Output as String Manipulation
	Input/Output as String Manipulation
	Input/Output as String Manipulation
	Input/Output as String Manipulation
	Input/Output as String Manipulation
	Input/Output as String Manipulation
	Input/Output as String Manipulation
	Input/Output as String Manipulation
	Input/Output as String Manipulation
	Input/Output as String Manipulation
	String Formatting
	String Formatting
	String Formatting
	String Formatting
	String Formatting
	String Formatting
	String Formatting
	Better Change Counter
	Better Change Counter
	Better Change Counter
	Better Change Counter
	Files: Multi-line Strings
	Multi-Line Strings
	Multi-Line Strings
	File Processing
	File Processing
	File Processing
	File Processing
	File Processing
	File Methods
	File Processing
	File Processing
	File Processing
	File Processing
	File Processing
	Example Program:�Batch Usernames
	Example Program:�Batch Usernames
	Example Program:�Batch Usernames
	Example Program:�Batch Usernames
	File Dialogs
	File Dialogs
	File Dialogs
	File Dialogs
	File Dialogs
	File Dialogs
	File Dialogs
	File Dialogs

