
Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 1

Chapter 6

How to code
summary queries

Objectives
Applied
1. Code summary queries that use aggregate functions, including queries

that use the WITH ROLLUP operator and the GROUPING and IF
functions.

2. Code summary queries that use aggregate window functions, including
functions that use frames and named windows.

Knowledge
1. Describe summary queries.
2. Describe the differences between the HAVING clause and the WHERE

clause.
3. Describe the use of the WITH ROLLUP operator.
4. Describe the use of the GROUPING and IF functions with the WITH

ROLLUP operator.
5. Describe the use of the aggregate window functions.

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 2

The syntax of the aggregate functions
AVG([ALL|DISTINCT] expression)

SUM([ALL|DISTINCT] expression)

MIN([ALL|DISTINCT] expression)

MAX([ALL|DISTINCT] expression)

COUNT([ALL|DISTINCT] expression)

COUNT(*)

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 3

A summary query
SELECT COUNT(*) AS number_of_invoices,

SUM(invoice_total – payment_total – credit_total)
AS total_due

FROM invoices
WHERE invoice_total – payment_total – credit_total > 0

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 4

A summary query with COUNT(*), AVG, and SUM
SELECT 'After 1/1/2018' AS selection_date,

COUNT(*) AS number_of_invoices,
ROUND(AVG(invoice_total), 2) AS avg_invoice_amt,
SUM(invoice_total) AS total_invoice_amt

FROM invoices
WHERE invoice_date > '2018-01-01'

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 5

A summary query with MIN and MAX
SELECT 'After 1/1/2018' AS selection_date,

COUNT(*) AS number_of_invoices,
MAX(invoice_total) AS highest_invoice_total,
MIN(invoice_total) AS lowest_invoice_total

FROM invoices
WHERE invoice_date > '2018-01-01'

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 6

A summary query for non-numeric columns
SELECT MIN(vendor_name) AS first_vendor,

MAX(vendor_name) AS last_vendor,
COUNT(vendor_name) AS number_of_vendors

FROM vendors

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 7

A summary query with the DISTINCT keyword
SELECT COUNT(DISTINCT vendor_id) AS number_of_vendors,

COUNT(vendor_id) AS number_of_invoices,
ROUND(AVG(invoice_total), 2) AS avg_invoice_amt,
SUM(invoice_total) AS total_invoice_amt

FROM invoices
WHERE invoice_date > '2018-01-01'

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 8

The syntax of a SELECT statement
with GROUP BY and HAVING clauses

SELECT select_list
FROM table_source
[WHERE search_condition]
[GROUP BY group_by_list]
[HAVING search_condition]
[ORDER BY order_by_list]

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 9

A summary query that calculates
the average invoice amount by vendor

SELECT vendor_id, ROUND(AVG(invoice_total), 2)
AS average_invoice_amount

FROM invoices
GROUP BY vendor_id
HAVING AVG(invoice_total) > 2000
ORDER BY average_invoice_amount DESC

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 10

(8 rows)

A summary query that includes
a functionally dependent column

SELECT vendor_name, vendor_state,
ROUND(AVG(invoice_total), 2) AS average_invoice_amount

FROM vendors JOIN invoices
ON vendors.vendor_id = invoices.vendor_id

GROUP BY vendor_name
HAVING AVG(invoice_total) > 2000
ORDER BY average_invoice_amount DESC

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 11

A summary query that counts
the number of invoices by vendor

SELECT vendor_id, COUNT(*) AS invoice_qty
FROM invoices
GROUP BY vendor_id

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 12

(34 rows)

A summary query with a join
SELECT vendor_state, vendor_city, COUNT(*) AS invoice_qty,

ROUND(AVG(invoice_total), 2) AS invoice_avg
FROM invoices JOIN vendors

ON invoices.vendor_id = vendors.vendor_id
GROUP BY vendor_state, vendor_city
ORDER BY vendor_state, vendor_city

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 13

(20 rows)

A summary query that limits the groups
to those with two or more invoices
SELECT vendor_state, vendor_city, COUNT(*) AS invoice_qty,

ROUND(AVG(invoice_total), 2) AS invoice_avg
FROM invoices JOIN vendors

ON invoices.vendor_id = vendors.vendor_id
GROUP BY vendor_state, vendor_city
HAVING COUNT(*) >= 2
ORDER BY vendor_state, vendor_city

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 14

(12 rows)

A summary query with a search condition
in the HAVING clause

SELECT vendor_name,
COUNT(*) AS invoice_qty,
ROUND(AVG(invoice_total), 2) AS invoice_avg

FROM vendors JOIN invoices
ON vendors.vendor_id = invoices.vendor_id

GROUP BY vendor_name
HAVING AVG(invoice_total) > 500
ORDER BY invoice_qty DESC

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 15

(19 rows)

A summary query with a search condition
in the WHERE clause

SELECT vendor_name,
COUNT(*) AS invoice_qty,
ROUND(AVG(invoice_total), 2) AS invoice_avg

FROM vendors JOIN invoices
ON vendors.vendor_id = invoices.vendor_id

WHERE invoice_total > 500
GROUP BY vendor_name
ORDER BY invoice_qty DESC

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 16

(20 rows)

A summary query with a compound condition
in the HAVING clause

SELECT
invoice_date,
COUNT(*) AS invoice_qty,
SUM(invoice_total) AS invoice_sum

FROM invoices
GROUP BY invoice_date
HAVING invoice_date BETWEEN '2018-05-01' AND '2018-05-31'

AND COUNT(*) > 1
AND SUM(invoice_total) > 100

ORDER BY invoice_date DESC

The result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 17

(7 rows)

The same query coded with a WHERE clause
SELECT

invoice_date,
COUNT(*) AS invoice_qty,
SUM(invoice_total) AS invoice_sum

FROM invoices
WHERE invoice_date BETWEEN '2018-05-01' AND '2018-05-31'
GROUP BY invoice_date
HAVING COUNT(*) > 1

AND SUM(invoice_total) > 100
ORDER BY invoice_date DESC

The same result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 18

(7 rows)

A summary query with a final summary row
SELECT vendor_id, COUNT(*) AS invoice_count,

SUM(invoice_total) AS invoice_total
FROM invoices
GROUP BY vendor_id WITH ROLLUP

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 19

(35 rows)

A summary query with a summary row
for each grouping level

SELECT vendor_state, vendor_city, COUNT(*) AS qty_vendors
FROM vendors
WHERE vendor_state IN ('IA', 'NJ')
GROUP BY vendor_state, vendor_city WITH ROLLUP

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 20

The basic syntax of the GROUPING function
GROUPING(expression)

A summary query that uses WITH ROLLUP
on a table with null values

SELECT invoice_date, payment_date,
SUM(invoice_total) AS invoice_total,
SUM(invoice_total - credit_total - payment_total)

AS balance_due
FROM invoices
WHERE invoice_date BETWEEN '2018-07-24' AND '2018-07-31'
GROUP BY invoice_date, payment_date WITH ROLLUP

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 21

A query that substitutes literals for nulls
in summary rows

SELECT IF(GROUPING(invoice_date) = 1, 'Grand totals',
invoice_date) AS invoice_date,

IF(GROUPING(payment_date) = 1, 'Invoice date totals',
payment_date) AS payment_date,

SUM(invoice_total) AS invoice_total,
SUM(invoice_total - credit_total - payment_total)

AS balance_due
FROM invoices
WHERE invoice_date BETWEEN '2018-07-24' AND '2018-07-31'
GROUP BY invoice_date, payment_date WITH ROLLUP

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 22

A query that displays only summary rows
SELECT IF(GROUPING(invoice_date) = 1, 'Grand totals', invoice_date)

AS invoice_date,
IF(GROUPING(payment_date) = 1, 'Invoice date totals',

payment_date) AS payment_date,
SUM(invoice_total) AS invoice_total,
SUM(invoice_total - credit_total - payment_total)

AS balance_due
FROM invoices
WHERE invoice_date BETWEEN '2018-07-24' AND '2018-07-31'
GROUP BY invoice_date, payment_date WITH ROLLUP
HAVING GROUPING(invoice_date) = 1 OR GROUPING(payment_date) = 1

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 23

The basic syntax of the OVER clause
OVER([PARTITION BY expression1 [, expression2]...

[ORDER BY expression1 [ASC|DESC]
[, expression2 [ASC|DESC]]...)

A SELECT statement
with two aggregate window functions

SELECT vendor_id, invoice_date, invoice_total,
SUM(invoice_total) OVER() AS total_invoices,
SUM(invoice_total) OVER(PARTITION BY vendor_id)

AS vendor_total
FROM invoices
WHERE invoice_total > 5000

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 24

A SELECT statement with a cumulative total
SELECT vendor_id, invoice_date, invoice_total,

SUM(invoice_total) OVER() AS total_invoices,
SUM(invoice_total) OVER(PARTITION BY vendor_id

ORDER BY invoice_total) AS vendor_total
FROM invoices
WHERE invoice_total > 5000

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 25

The syntax for defining a frame
{ROWS | RANGE} {frame_start |

BETWEEN frame_start AND frame_end}

Possible values for frame_start and frame_end
CURRENT ROW

UNBOUNDED PRECEDING

UNBOUNDED FOLLOWING

expr PRECEDING

expr FOLLOWING

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 26

A SELECT statement that defines a frame
SELECT vendor_id, invoice_date, invoice_total,

SUM(invoice_total) OVER() AS total_invoices,
SUM(invoice_total) OVER(PARTITION BY vendor_id

ORDER BY invoice_date
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS vendor_total

FROM invoices
WHERE invoice_date BETWEEN '2018-04-01' AND '2018-04-30'

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 27

A SELECT statement that creates peer groups
SELECT vendor_id, invoice_date, invoice_total,

SUM(invoice_total) OVER() AS total_invoices,
SUM(invoice_total) OVER(PARTITION BY vendor_id

ORDER BY invoice_date
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS vendor_total

FROM invoices
WHERE invoice_date BETWEEN '2018-04-01' AND '2018-04-30'

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 28

A SELECT statement that calculates
moving averages
SELECT MONTH(invoice_date) AS month,

SUM(invoice_total) AS total_invoices,
ROUND(AVG(SUM(invoice_total))

OVER(ORDER BY MONTH(invoice_date)
RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING), 2)
AS 3_month_avg

FROM invoices
GROUP BY MONTH(invoice_date)

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 29

The syntax for naming a window
WINDOW window_name AS

([partition_clause] [order_clause] [frame_clause])

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 30

A SELECT statement with four functions
that use the same window
SELECT vendor_id, invoice_date, invoice_total,

SUM(invoice_total) OVER(PARTITION BY vendor_id)
AS vendor_total,

ROUND(AVG(invoice_total) OVER(PARTITION BY vendor_id), 2)
AS vendor_avg,

MAX(invoice_total) OVER(PARTITION BY vendor_id)
AS vendor_max,

MIN(invoice_total) OVER(PARTITION BY vendor_id)
AS vendor_min

FROM invoices
WHERE invoice_total > 5000

The result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 31

A SELECT statement with a named window
SELECT vendor_id, invoice_date, invoice_total,

SUM(invoice_total) OVER vendor_window
AS vendor_total,

ROUND(AVG(invoice_total) OVER vendor_window, 2)
AS vendor_avg,

MAX(invoice_total) OVER vendor_window AS vendor_max,
MIN(invoice_total) OVER vendor_window AS vendor_min

FROM invoices
WHERE invoice_total > 5000
WINDOW vendor_window AS (PARTITION BY vendor_id)

The same result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 32

A SELECT statement that adds to the
specification for a named window
SELECT vendor_id, invoice_date, invoice_total,

SUM(invoice_total)
OVER (vendor_window ORDER BY invoice_date ASC)
AS invoice_date_asc,

SUM(invoice_total)
OVER (vendor_window ORDER BY invoice_date DESC)
AS invoice_date_desc

FROM invoices
WHERE invoice_total > 5000
WINDOW vendor_window AS (PARTITION BY vendor_id)

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C6, Slide 33

