
IS 430 – Foundations of Information Processing
Instructor: Kevin Trainor
Assignment: Final Project
Course Component: Final Project
Grading Rubric

Submission

Timeliness (10 available points)

Requirements

Must be submitted by date and time indicated in the weekly schedule.

DescriptionPercent Credit

On Time100

Late0

Not submitted or submitted too late0

File Submitted (10 available points)

Requirements

Submit only 1 file.

File type must be .ZIP.

File name must conform to all requirements stated in assignment instructions.

Contents of .ZIP file must be a properly named directory that represents a PyCharm project.

Directory contents must be properly named PyCharm project files.

DescriptionPercent Credit

Meets all expectations.100

Meets nearly all expectations.50

Does not meet expectations.0

Not submitted or submitted too late.0

1 of 11Final Project Grading Rubric [Rev. 2021-03-25]



Exercise 1

Completeness (10 available content points)

Requirements

Must produce the expected quantity of results.

Must produce the exact values expected.

Results must be formatted as expected.

DescriptionPercent Credit

Meets all expectations.100

Meets nearly all expectations.90

Meets most expectations.75

Meets some expectations.50

Meets few expectations.25

Meets nearly no expectations.10

Meets no expectations.0

Not submitted or submitted too late.0

2 of 11Final Project Grading Rubric [Rev. 2021-03-25]



Technique (10 available content points)

Requirements

The python module must be properly named.

Include a single-line comment with name of program file.

Include a single-line comment that describes the intent of the program.

Place your highest-level code in a function named main.

Your code should be factored such that there is a function in your program for each part of the problem.

Each function should contain code relating to the same thing – it should have high cohesion.

Functions should know as little as possible about the workings of other functions – they should have
low coupling.

If the Python file that you are creating is a regular executable program, include a final line of code in
the program that calls the main() function.

Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor. For example, place
two blank lines between the code making up a function (or class) and the code that surrounds that
function (or class).

Output printed by the program (both prompts and results) should be polite and descriptive.

Choose names for your variables that are properly descriptive.

Choose names for your functions that are properly descriptive.

Choose names for your classes that are properly descriptive

Follow PEP-8 Python coding style guidelines for forming names of variables, functions, and classes.

Close all files before the conclusion of the program.

Model your solution after the code that I demonstrate in the tutorial videos.

Remember to test your program thoroughly before submitting your work.

Your code must pass all relevant test cases. Make sure that it passes tests at the boundaries created
by if, else, and elif conditions in your program (boundary value tests).

DescriptionPercent Credit

Meets all expectations.100

Meets nearly all expectations.90

Meets most expectations.75

Meets some expectations.50

Meets few expectations.25

Meets nearly no expectations.10

3 of 11Final Project Grading Rubric [Rev. 2021-03-25]



Meets no expectations.0

Not submitted or submitted too late.0

Exercise 2

Completeness (10 available content points)

Requirements

Must produce the expected quantity of results.

Must produce the exact values expected.

Results must be formatted as expected.

DescriptionPercent Credit

Meets all expectations.100

Meets nearly all expectations.90

Meets most expectations.75

Meets some expectations.50

Meets few expectations.25

Meets nearly no expectations.10

Meets no expectations.0

Not submitted or submitted too late.0

4 of 11Final Project Grading Rubric [Rev. 2021-03-25]



Technique (10 available content points)

Requirements

The python module must be properly named.

Include a single-line comment with name of program file.

Include a single-line comment that describes the intent of the program.

Place your highest-level code in a function named main.

Your code should be factored such that there is a function in your program for each part of the problem.

Each function should contain code relating to the same thing – it should have high cohesion.

Functions should know as little as possible about the workings of other functions – they should have
low coupling.

If the Python file that you are creating is a regular executable program, include a final line of code in
the program that calls the main() function.

Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor. For example, place
two blank lines between the code making up a function (or class) and the code that surrounds that
function (or class).

Output printed by the program (both prompts and results) should be polite and descriptive.

Choose names for your variables that are properly descriptive.

Choose names for your functions that are properly descriptive.

Choose names for your classes that are properly descriptive

Follow PEP-8 Python coding style guidelines for forming names of variables, functions, and classes.

Close all files before the conclusion of the program.

Model your solution after the code that I demonstrate in the tutorial videos.

Remember to test your program thoroughly before submitting your work.

Your code must pass all relevant test cases. Make sure that it passes tests at the boundaries created
by if, else, and elif conditions in your program (boundary value tests).

DescriptionPercent Credit

Meets all expectations.100

Meets nearly all expectations.90

Meets most expectations.75

Meets some expectations.50

Meets few expectations.25

Meets nearly no expectations.10

5 of 11Final Project Grading Rubric [Rev. 2021-03-25]



Meets no expectations.0

Not submitted or submitted too late.0

Exercise 3

Completeness (10 available content points)

Requirements

Must produce the expected quantity of results.

Must produce the exact values expected.

Results must be formatted as expected.

DescriptionPercent Credit

Meets all expectations.100

Meets nearly all expectations.90

Meets most expectations.75

Meets some expectations.50

Meets few expectations.25

Meets nearly no expectations.10

Meets no expectations.0

Not submitted or submitted too late.0

6 of 11Final Project Grading Rubric [Rev. 2021-03-25]



Technique (10 available content points)

Requirements

The python module must be properly named.

Include a single-line comment with name of program file.

Include a single-line comment that describes the intent of the program.

Place your highest-level code in a function named main.

Your code should be factored such that there is a function in your program for each part of the problem.

Each function should contain code relating to the same thing – it should have high cohesion.

Functions should know as little as possible about the workings of other functions – they should have
low coupling.

Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor. For example, place
two blank lines between the code making up a function (or class) and the code that surrounds that
function (or class).

Output printed by the program (both prompts and results) should be polite and descriptive.

Choose names for your variables that are properly descriptive.

Choose names for your functions that are properly descriptive.

The names of instance variables, methods, and the class itself must match those provided in the
instructions.

Follow PEP-8 Python coding style guidelines for forming names of variables, functions, and classes.

Close all files before the conclusion of the program.

Model your solution after the code that I demonstrate in the tutorial videos.

Remember to test your program thoroughly before submitting your work.

Your code must pass all relevant test cases. Make sure that it passes tests at the boundaries created
by if, else, and elif conditions in your program (boundary value tests).

Place your unit testing code for the class in the main() function.

Include statements at the end of your module file that cause the main() function to be called only
when the module is run directly.

Make sure that the code in main() is not called when the module is imported into another program.

Make sure that all client code can access instance variables using Pythonic field access
(instance.fieldname).

When typical getter/setter features are needed for an instance variable, implement Pythonic
getter/setter features using the @property decorators. DO NOT create Non-Pythonic getter/setter
methods with names like get_fieldname() and set_fieldname().

Never store values as instance variables that may be derived from other instance variables. Instead,
provide methods in the class with names like calculate_derived_value().

7 of 11Final Project Grading Rubric [Rev. 2021-03-25]



Always provide an __init__() constructor.

Always provide a __str__() method.

Always provide a __repr__() method.

DescriptionPercent Credit

Meets all expectations.100

Meets nearly all expectations.90

Meets most expectations.75

Meets some expectations.50

Meets few expectations.25

Meets nearly no expectations.10

Meets no expectations.0

Not submitted or submitted too late.0

8 of 11Final Project Grading Rubric [Rev. 2021-03-25]



Exercise 4

Completeness (10 available content points)

Requirements

Must produce the expected quantity of results.

Must produce the exact values expected.

Results must be formatted as expected.

DescriptionPercent Credit

Meets all expectations.100

Meets nearly all expectations.90

Meets most expectations.75

Meets some expectations.50

Meets few expectations.25

Meets nearly no expectations.10

Meets no expectations.0

Not submitted or submitted too late.0

9 of 11Final Project Grading Rubric [Rev. 2021-03-25]



Technique (10 available content points)

Requirements

The python module must be properly named.

Include a single-line comment with name of program file.

Include a single-line comment that describes the intent of the program.

Place your highest-level code in a function named main.

Your code should be factored such that there is a function in your program for each part of the problem.

Each function should contain code relating to the same thing – it should have high cohesion.

Functions should know as little as possible about the workings of other functions – they should have
low coupling.

If the Python file that you are creating is a regular executable program, include a final line of code in
the program that calls the main() function.

Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor. For example, place
two blank lines between the code making up a function (or class) and the code that surrounds that
function (or class).

Output printed by the program (both prompts and results) should be polite and descriptive.

Choose names for your variables that are properly descriptive.

Choose names for your functions that are properly descriptive.

Choose names for your classes that are properly descriptive

Follow PEP-8 Python coding style guidelines for forming names of variables, functions, and classes.

Close all files before the conclusion of the program.

Model your solution after the code that I demonstrate in the tutorial videos.

Remember to test your program thoroughly before submitting your work.

Your code must pass all relevant test cases. Make sure that it passes tests at the boundaries created
by if, else, and elif conditions in your program (boundary value tests).

DescriptionPercent Credit

Meets all expectations.100

Meets nearly all expectations.90

Meets most expectations.75

Meets some expectations.50

Meets few expectations.25

Meets nearly no expectations.10

10 of 11Final Project Grading Rubric [Rev. 2021-03-25]



Meets no expectations.0

Not submitted or submitted too late.0

Total Available Points = 100

11 of 11Final Project Grading Rubric [Rev. 2021-03-25]


