
Python Dictionaries
Chapter 9

Python for Everybody
www.py4e.com

What is a Collection?

• A collection is nice because we can put more than one value in it
and carry them all around in one convenient package

• We have a bunch of values in a single “variable”

• We do this by having more than one place “in” the variable

• We have ways of finding the different places in the variable

What is Not a “Collection”?
Most of our variables have one value in them - when we put a new
value in the variable - the old value is overwritten

$ python
>>> x = 2
>>> x = 4
>>> print(x)
4

A Story of Two Collections..
• List

- A linear collection of values that stay in order

• Dictionary

- A “bag” of values, each with its own label

Dictionaries

money

tissue
calculator

perfume

candy

http://en.wikipedia.org/wiki/Associative_array

Dictionaries
• Dictionaries are Python’s most powerful data collection

• Dictionaries allow us to do fast database-like operations in Python

• Dictionaries have different names in different languages

- Associative Arrays - Perl / PHP

- Properties or Map or HashMap - Java

- Property Bag - C# / .Net

• Lists index their entries
based on the position in the
list

• Dictionaries are like bags -
no order

• So we index the things we
put in the dictionary with a
“lookup tag”

>>> purse = dict()
>>> purse['money'] = 12
>>> purse['candy'] = 3
>>> purse['tissues'] = 75
>>> print(purse)
{'money': 12, 'tissues': 75, 'candy': 3}
>>> print(purse['candy'])
3
>>> purse['candy'] = purse['candy'] + 2
>>> print(purse)
{'money': 12, 'tissues': 75, 'candy': 5}

Dictionaries

Comparing Lists and Dictionaries
Dictionaries are like lists except that they use keys instead of
numbers to look up values

>>> lst = list()
>>> lst.append(21)
>>> lst.append(183)
>>> print(lst)
[21, 183]
>>> lst[0] = 23
>>> print(lst)
[23, 183]

>>> ddd = dict()
>>> ddd['age'] = 21
>>> ddd['course'] = 182
>>> print(ddd)
{'course': 182, 'age': 21}
>>> ddd['age'] = 23
>>> print(ddd)
{'course': 182, 'age': 23}

>>> lst = list()
>>> lst.append(21)
>>> lst.append(183)
>>> print(lst)
[21, 183]
>>> lst[0] = 23
>>> print(lst)
[23, 183]

>>> ddd = dict()
>>> ddd['age'] = 21
>>> ddd['course'] = 182
>>> print(ddd)
{'course': 182, 'age': 21}
>>> ddd['age'] = 23
>>> print(ddd)
{'course': 182, 'age': 23}

[0] 21

[1] 183
lst

Key Value

['course'] 182

['age'] 21
ddd

Key Value

List

Dictionary

Dictionary Literals (Constants)
• Dictionary literals use curly braces and have a list of key : value pairs

• You can make an empty dictionary using empty curly braces

>>> jjj = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}
>>> print(jjj)
{'jan': 100, 'chuck': 1, 'fred': 42}
>>> ooo = { }
>>> print(ooo)
{}
>>>

Most Common Name?

Most Common Name?

csev

zhen

zhen

marquard

zhen

cwen

csev
marquardzhen

marquard

csev

cwen
zhen

Most Common Name?

csev

zhen

zhen

marquard

zhen

cwen

csev
marquardzhen

marquard

csev

cwen
zhen

Many Counters with a Dictionary
One common use of dictionaries is
counting how often we “see” something

Key Value

>>> ccc = dict()
>>> ccc['csev'] = 1
>>> ccc['cwen'] = 1
>>> print(ccc)
{'csev': 1, 'cwen': 1}
>>> ccc['cwen'] = ccc['cwen'] + 1
>>> print(ccc)
{'csev': 1, 'cwen': 2}

Dictionary Tracebacks
• It is an error to reference a key which is not in the dictionary

• We can use the in operator to see if a key is in the dictionary

>>> ccc = dict()
>>> print(ccc['csev'])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'csev'
>>> 'csev' in ccc
False

When We See a New Name
When we encounter a new name, we need to add a new entry in the
dictionary and if this the second or later time we have seen the name,
we simply add one to the count in the dictionary under that name

counts = dict()
names = ['csev', 'cwen', 'csev', 'zqian', 'cwen']
for name in names :

if name not in counts:
counts[name] = 1

else :
counts[name] = counts[name] + 1

print(counts)

{'csev': 2, 'zqian': 1, 'cwen': 2}

The get Method for Dictionaries
The pattern of checking to see if a
key is already in a dictionary and
assuming a default value if the key
is not there is so common that there
is a method called get() that does
this for us

if name in counts:
x = counts[name]

else :
x = 0

x = counts.get(name, 0)

Default value if key does not exist
(and no Traceback). {'csev': 2, 'zqian': 1, 'cwen': 2}

Simplified Counting with get()
We can use get() and provide a default value of zero when the key
is not yet in the dictionary - and then just add one

counts = dict()
names = ['csev', 'cwen', 'csev', 'zqian', 'cwen']
for name in names :

counts[name] = counts.get(name, 0) + 1
print(counts)

Default {'csev': 2, 'zqian': 1, 'cwen': 2}

http://www.youtube.com/watch?v=EHJ9uYx5L58

counts = dict()
names = ['csev', 'cwen', 'csev', 'zqian', 'cwen']
for name in names :

counts[name] = counts.get(name, 0) + 1
print(counts)

Simplified Counting with get()

Counting Words in Text

Writing programs (or programming) is a very creative and rewarding activity. You can write
programs for many reasons ranging from making your living to solving a difficult data analysis

problem to having fun to helping someone else solve a problem. This book assumes that
everyone needs to know how to program and that once you know how to program, you will figure

out what you want to do with your newfound skills.

We are surrounded in our daily lives with computers ranging from laptops to cell phones. We
can think of these computers as our “personal assistants” who can take care of many things on

our behalf. The hardware in our current-day computers is essentially built to continuously ask us
the question, “What would you like me to do next?”

Our computers are fast and have vast amounts of memory and could be very helpful to us if we
only knew the language to speak to explain to the computer what we would like it to do next. If
we knew this language we could tell the computer to do tasks on our behalf that were repetitive.

Interestingly, the kinds of things computers can do best are often the kinds of things that we
humans find boring and mind-numbing.

Counting Pattern
counts = dict()
print('Enter a line of text:')
line = input('')

words = line.split()

print('Words:', words)

print('Counting...')
for word in words:

counts[word] = counts.get(word,0) + 1
print('Counts', counts)

The general pattern to count the
words in a line of text is to split
the line into words, then loop
through the words and use a
dictionary to track the count of
each word independently.

python wordcount.py
Enter a line of text:
the clown ran after the car and the car ran into the tent
and the tent fell down on the clown and the car

Words: ['the', 'clown', 'ran', 'after', 'the', 'car',
'and', 'the', 'car', 'ran', 'into', 'the', 'tent', 'and',
'the', 'tent', 'fell', 'down', 'on', 'the', 'clown',
'and', 'the', 'car']
Counting…

Counts {'and': 3, 'on': 1, 'ran': 2, 'car': 3, 'into': 1,
'after': 1, 'clown': 2, 'down': 1, 'fell': 1, 'the': 7,
'tent': 2}

http://www.flickr.com/photos/71502646@N00/2526007974/

counts = dict()
line = input('Enter a line of text:')
words = line.split()

print('Words:', words)
print('Counting...’)

for word in words:
counts[word] = counts.get(word,0) + 1

print('Counts', counts)

python wordcount.py
Enter a line of text:
the clown ran after the car and the car ran
into the tent and the tent fell down on the
clown and the car

Words: ['the', 'clown', 'ran', 'after', 'the', 'car',
'and', 'the', 'car', 'ran', 'into', 'the', 'tent', 'and',
'the', 'tent', 'fell', 'down', 'on', 'the', 'clown',
'and', 'the', 'car']
Counting...

Counts {'and': 3, 'on': 1, 'ran': 2, 'car': 3,
'into': 1, 'after': 1, 'clown': 2, 'down': 1, 'fell':
1, 'the': 7, 'tent': 2}

Definite Loops and Dictionaries
Even though dictionaries are not stored in order, we can write a for
loop that goes through all the entries in a dictionary - actually it
goes through all of the keys in the dictionary and looks up the
values

>>> counts = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}
>>> for key in counts:
... print(key, counts[key])
...
jan 100
chuck 1
fred 42
>>>

Retrieving Lists of Keys and Values

You can get a list
of keys, values, or
items (both) from
a dictionary

>>> jjj = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}
>>> print(list(jjj))
['jan', 'chuck', 'fred']
>>> print(jjj.keys())
['jan', 'chuck', 'fred']
>>> print(jjj.values())
[100, 1, 42]
>>> print(jjj.items())
[('jan', 100), ('chuck', 1), ('fred', 42)]
>>>

What is a “tuple”? - coming soon...

Bonus: Two Iteration Variables!
• We loop through the

key-value pairs in a
dictionary using *two*
iteration variables

• Each iteration, the first
variable is the key and
the second variable is
the corresponding
value for the key

jjj = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}
for aaa,bbb in jjj.items() :

print(aaa, bbb)

jan 100
chuck 1
fred 42 [chuck] 1

[fred] 42

aaa bbb
[jan] 100

name = input('Enter file:')
handle = open(name)

counts = dict()
for line in handle:

words = line.split()
for word in words:

counts[word] = counts.get(word,0) + 1

bigcount = None
bigword = None
for word,count in counts.items():

if bigcount is None or count > bigcount:
bigword = word
bigcount = count

print(bigword, bigcount)

python words.py
Enter file: clown.txt
the 7

python words.py
Enter file: words.txt
to 16

Using two nested loops

Summary

Acknowledgements / Contributions

These slides are Copyright 2010- Charles R. Severance
(www.dr-chuck.com) of the University of Michigan School of
Information and open.umich.edu and made available under a
Creative Commons Attribution 4.0 License. Please maintain this
last slide in all copies of the document to comply with the
attribution requirements of the license. If you make a change,
feel free to add your name and organization to the list of
contributors on this page as you republish the materials.

Initial Development: Charles Severance, University of Michigan
School of Information

… Insert new Contributors or translation credits here

...

