
Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 1

Chapter 7

How to code
subqueries

Objectives
Applied
1. Code SELECT statements that require subqueries.
2. Code SELECT statements that use common table expressions

(CTEs) to define the subqueries.

Knowledge
1. Describe the way subqueries can be used in the WHERE,

HAVING, FROM and SELECT clauses of a SELECT statement.
2. Describe the difference between a correlated subquery and a

noncorrelated subquery.
3. Describe the use of common table expressions (CTEs).

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 2

Four ways to introduce a subquery
in a SELECT statement

1. In a WHERE clause as a search condition
2. In a HAVING clause as a search condition
3. In the FROM clause as a table specification
4. In the SELECT clause as a column specification

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 3

A subquery in the WHERE clause
SELECT invoice_number, invoice_date, invoice_total
FROM invoices
WHERE invoice_total >

(SELECT AVG(invoice_total)
FROM invoices)

ORDER BY invoice_total

The value returned by the subquery
1879.741316

The result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 4

(21 rows)

A query that uses an inner join
SELECT invoice_number, invoice_date, invoice_total
FROM invoices JOIN vendors

ON invoices.vendor_id = vendors.vendor_id
WHERE vendor_state = 'CA'
ORDER BY invoice_date

The result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 5

(40 rows)

The same query restated with a subquery
SELECT invoice_number, invoice_date, invoice_total
FROM invoices
WHERE vendor_id IN

(SELECT vendor_id
FROM vendors
WHERE vendor_state = 'CA')

ORDER BY invoice_date

The same result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 6

(40 rows)

Advantages of joins
• A join can include columns from both tables.
• A join is more intuitive when it uses an existing relationship.

Advantages of subqueries
• A subquery can pass an aggregate value to the main query.
• A subquery is more intuitive when it uses an ad hoc relationship.
• Long, complex queries can be easier to code using subqueries.

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 7

The syntax of a WHERE clause
that uses an IN phrase

WHERE test_expression [NOT] IN (subquery)

A query that gets vendors without invoices
SELECT vendor_id, vendor_name, vendor_state
FROM vendors
WHERE vendor_id NOT IN

(SELECT DISTINCT vendor_id
FROM invoices)

ORDER BY vendor_id

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 8

The result of the subquery that gets distinct
vendor ids with invoices

The result set that gets vendors without invoices

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 9

(88 rows)

(34 rows)

The query restated without a subquery
SELECT v.vendor_id, vendor_name, vendor_state
FROM vendors v LEFT JOIN invoices i

ON v.vendor_id = i.vendor_id
WHERE i.vendor_id IS NULL
ORDER BY v.vendor_id

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 10

The syntax of a WHERE clause
that uses a comparison operator

WHERE expression comparison_operator [SOME|ANY|ALL]
(subquery)

A query with a subquery in a WHERE condition
SELECT invoice_number, invoice_date,

invoice_total - payment_total - credit_total
AS balance_due

FROM invoices
WHERE invoice_total - payment_total - credit_total > 0

AND invoice_total - payment_total - credit_total <
(
SELECT AVG(invoice_total - payment_total –

credit_total)
FROM invoices
WHERE invoice_total - payment_total - credit_total > 0

)
ORDER BY invoice_total DESC

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 11

The value returned by the subquery
2910.947273

The result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 12

(9 rows)

How the ALL keyword works
Condition Equivalent expression
x > ALL (1, 2) x > 2
x < ALL (1, 2) x < 1
x = ALL (1, 2) (x = 1) AND (x = 2)
x <> ALL (1, 2) x NOT IN (1, 2)

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 13

A query that uses ALL

The result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 14

(25 rows)

SELECT vendor_name, invoice_number, invoice_total
FROM invoices i JOIN vendors v ON i.vendor_id = v.vendor_id
WHERE invoice_total > ALL

(SELECT invoice_total
FROM invoices
WHERE vendor_id = 34)

ORDER BY vendor_name

The result of the subquery

How the ANY keyword works
Condition Equivalent expression
x > ANY (1, 2) x > 1
x < ANY (1, 2) x < 2
x = ANY (1, 2) x IN (1, 2)
x <> ANY (1, 2) (x <> 1) OR (x <> 2)

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 15

A query that uses ANY
SELECT vendor_name, invoice_number, invoice_total
FROM vendors JOIN invoices

ON vendors.vendor_id = invoices.vendor_id
WHERE invoice_total < ANY

(SELECT invoice_total
FROM invoices
WHERE vendor_id = 115)

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 16

The result of the subquery with invoice totals
for vendor 115

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 17

(17 rows)

The result set for invoices with totals less than
any invoice for vendor 115

A query that uses a correlated subquery
SELECT vendor_id, invoice_number, invoice_total
FROM invoices i
WHERE invoice_total >

(SELECT AVG(invoice_total)
FROM invoices
WHERE vendor_id = i.vendor_id)

ORDER BY vendor_id, invoice_total

The value returned by the subquery for vendor 95
28.501667

The result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 18

(36 rows)

The syntax of a subquery
that uses the EXISTS operator

WHERE [NOT] EXISTS (subquery)

A query that gets vendors without invoices
SELECT vendor_id, vendor_name, vendor_state
FROM vendors
WHERE NOT EXISTS

(SELECT *
FROM invoices
WHERE vendor_id = vendors.vendor_id)

The result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 19

(88 rows)

A subquery in the SELECT clause
SELECT vendor_name,

(SELECT MAX(invoice_date) FROM invoices
WHERE vendor_id = vendors.vendor_id) AS latest_inv

FROM vendors
ORDER BY latest_inv DESC

The result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 20

(122 rows)

The same query restated using a join
SELECT vendor_name, MAX(invoice_date) AS latest_inv
FROM vendors v

LEFT JOIN invoices i ON v.vendor_id = i.vendor_id
GROUP BY vendor_name
ORDER BY latest_inv DESC

The same result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 21

(122 rows)

A query that uses an inline view
SELECT vendor_state,

MAX(sum_of_invoices) AS max_sum_of_invoices
FROM
(

SELECT vendor_state, vendor_name,
SUM(invoice_total) AS sum_of_invoices

FROM vendors v JOIN invoices i
ON v.vendor_id = i.vendor_id

GROUP BY vendor_state, vendor_name
) t
GROUP BY vendor_state
ORDER BY vendor_state

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 22

The result of the subquery (an inline view)

The result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 23

(10 rows)

(34 rows)

A complex query that uses three subqueries
SELECT t1.vendor_state, vendor_name, t1.sum_of_invoices
FROM

(
-- invoice totals by vendor
SELECT vendor_state, vendor_name,

SUM(invoice_total) AS sum_of_invoices
FROM vendors v JOIN invoices i

ON v.vendor_id = i.vendor_id
GROUP BY vendor_state, vendor_name

) t1

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 24

A complex query (continued)
JOIN

(
-- top invoice totals by state
SELECT vendor_state,

MAX(sum_of_invoices)
AS sum_of_invoices

FROM
(

-- invoice totals by vendor
SELECT vendor_state, vendor_name,

SUM(invoice_total)
AS sum_of_invoices

FROM vendors v JOIN invoices i
ON v.vendor_id = i.vendor_id

GROUP BY vendor_state, vendor_name
) t2
GROUP BY vendor_state

) t3
ON t1.vendor_state = t3.vendor_state AND

t1.sum_of_invoices = t3.sum_of_invoices
ORDER BY vendor_state

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 25

The result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 26

(10 rows)

A procedure for building complex queries
1. State the problem to be solved by the query in English.
2. Use pseudocode to outline the query.
3. Code the subqueries and test them to be sure that they return the

correct data.
4. Code and test the final query.

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 27

Pseudocode for the query
SELECT vendor_state, vendor_name, sum_of_invoices
FROM (subquery returning vendor_state, vendor_name,

sum_of_invoices)
JOIN (subquery returning vendor_state,

largest_sum_of_invoices)
ON vendor_state AND sum_of_invoices

ORDER BY vendor_state

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 28

The code for the first subquery
SELECT vendor_state, vendor_name,

SUM(invoice_total) AS sum_of_invoices
FROM vendors v JOIN invoices i

ON v.vendor_id = i.vendor_id
GROUP BY vendor_state, vendor_name

The result set for the first subquery

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 29

(34 rows)

The code for the second subquery
SELECT vendor_state,

MAX(sum_of_invoices) AS sum_of_invoices
FROM
(

SELECT vendor_state, vendor_name,
SUM(invoice_total) AS sum_of_invoices

FROM vendors v JOIN invoices i
ON v.vendor_id = i.vendor_id

GROUP BY vendor_state, vendor_name
) t
GROUP BY vendor_state

The result set for the second subquery

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 30

(10 rows)

The syntax of a CTE
WITH [RECURSIVE] cte_name1 AS (subquery1)
[, cte_name2 AS (subquery2)]
[...]
sql_statement

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 31

Two CTEs and a query that uses them
WITH summary AS
(

SELECT vendor_state, vendor_name,
SUM(invoice_total) AS sum_of_invoices

FROM vendors v JOIN invoices i
ON v.vendor_id = i.vendor_id

GROUP BY vendor_state, vendor_name
),
top_in_state AS
(

SELECT vendor_state,
MAX(sum_of_invoices) AS sum_of_invoices

FROM summary
GROUP BY vendor_state

)

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 32

Two CTEs and a query that uses them (continued)
SELECT summary.vendor_state, summary.vendor_name,

top_in_state.sum_of_invoices
FROM summary JOIN top_in_state

ON summary.vendor_state = top_in_state.vendor_state AND
summary.sum_of_invoices = top_in_state.sum_of_invoices

ORDER BY summary.vendor_state

The result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 33

(10 rows)

The Employees table

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 34

A recursive CTE that returns hierarchical data
WITH RECURSIVE employees_cte AS
(

-- Nonrecursive query
SELECT employee_id,

CONCAT(first_name, ' ', last_name) AS employee_name,
1 AS ranking

FROM employees
WHERE manager_id IS NULL

UNION ALL
-- Recursive query
SELECT employees.employee_id,

CONCAT(first_name, ' ', last_name),
ranking + 1

FROM employees
JOIN employees_cte
ON employees.manager_id = employees_cte.employee_id

)
SELECT *
FROM employees_cte
ORDER BY ranking, employee_id

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 35

The final result set

Murach’s MySQL 3rd Edition© 2019, Mike Murach & Associates, Inc. C7, Slide 36

