
Page 1 of 8

Zelle 3e Chapter 11 Coding Assignment

General Instructions
My expectations for your work on coding assignment exercises will grow as we progress
through the course. In addition to applying any new programming techniques that have
been covered in the current chapter, I will be expecting you to follow all of the good
programming practices that we have adopted in the preceding weeks. Here is a quick
summary of good practices that we have covered so far:

• Include a single-line comment with name of program file.
• Include a single-line comment that describes the intent of the program.
• Place your highest-level code in a function named main.
• Include a final line of code in the program that executes the main function.
• Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor.

For example, place two blank lines between the code making up a function and
the code surrounding that function.

• Output printed by the program (both prompts and results) should be polite and
descriptive.

• Choose names for your variables that are properly descriptive.
• Choose names for your functions that are properly descriptive.
• Close all files before the conclusion of the program.
• Model your solution after the code that I demonstrate in the tutorial videos.
• Remember to test your program thoroughly before submitting your work.
• Your code must pass all relevant test cases. Make sure that it passes tests at the

boundaries created by if, else, and elif conditions in your program (boundary
value tests).

Page 2 of 8

Exercise 1
Create a program named create_population_density_reports. This program reads a data
file regarding countries and their population density. Each line of the file contains 3
fields for 1 country:

• Country name
• Population
• Area in square miles

Two starter data files have been provided for your use:

• density_data.txt
• empty_file.txt

Please note that data fields in this file format are separated by a semicolon (;). The
empty file is provided to test your program’s resilience to being passed an empty input
file.

A Python class named Country has been provided for your use in storing country data,
sorting country data, and calculating population density. The Country class and related
code are contained in the starter file:

• my_countries.py

Please note that the Country class has both instance variables and methods that provide
data that you will need to create the report. The following are instance variables:

• country_name
• population

The following is a method:

• calculate_population_density_per_square_mile()

The program should create a Python list of Country instances, each instance containing
the data for one country.

Having created the list of Country instances, this list should be sorted into country name
order and a report should be printed with the title BY COUNTRY NAME.

When the first report is complete, the list of Country instances should be sorted into
descending order of population density. Finally, a report should be printed with the title
BY DESCENDING POPULATION DENSITY PER SQUARE MILE.

Page 3 of 8

When coding and testing this program, follow the approach that I take in the Part 1
tutorial video. This includes using the techniques demonstrated for centering report
titles, placing column headings, and inserting commas into number strings. Format
strings for the report headings and column headings should be similar to those used in
the tutorial example. Here is a hint to help you create a format string for the detail line
in this report:

• '{0:<15}{1: >15,.2f}{2: >15,.2f}{3: >15,.2f}'.format(q, r, s, t)

Please remember to test your program with both of the test files provided:

• density_data.txt
• empty_file.txt

When this program is run, console sessions should look like this:

Please enter input file name: empty_file.txt

 BY COUNTRY NAME

Country Population Area Density
 (SQMI) (/SQMI)

 BY DESCENDING POPULATION DENSITY PER SQUARE MILE

Country Population Area Density
 (SQMI) (/SQMI)

Please enter input file name: density_data.txt

 BY COUNTRY NAME

Country Population Area Density
 (SQMI) (/SQMI)
Bangladesh 166,132,772 55,598 2,988
Belgium 11,454,906 11,787 972
Burundi 10,681,186 10,740 995
Dominican Republic 10,266,149 18,485 555
Germany 82,979,100 137,903 602
Haiti 11,112,945 10,450 1,063

Page 4 of 8

India 1,344,098,517 1,269,211 1,059
Israel 8,997,000 8,522 1,056
Japan 126,320,000 145,925 866
Netherlands 17,301,708 16,033 1,079
Nigeria 195,875,237 356,669 549
North Korea 25,610,672 47,399 540
Pakistan 203,841,217 310,403 657
Philippines 107,275,680 115,831 926
Rwanda 12,001,136 10,169 1,180
South Korea 51,635,256 38,691 1,335
Sri Lanka 21,670,000 25,332 855
Taiwan 23,590,744 13,976 1,688
United Kingdom 66,040,229 93,788 704
Vietnam 94,660,000 127,882 740

 BY DESCENDING POPULATION DENSITY PER SQUARE MILE

Country Population Area Density
 (SQMI) (/SQMI)
Bangladesh 166,132,772 55,598 2,988
Taiwan 23,590,744 13,976 1,688
South Korea 51,635,256 38,691 1,335
Rwanda 12,001,136 10,169 1,180
Netherlands 17,301,708 16,033 1,079
Haiti 11,112,945 10,450 1,063
India 1,344,098,517 1,269,211 1,059
Israel 8,997,000 8,522 1,056
Burundi 10,681,186 10,740 995
Belgium 11,454,906 11,787 972
Philippines 107,275,680 115,831 926
Japan 126,320,000 145,925 866
Sri Lanka 21,670,000 25,332 855
Vietnam 94,660,000 127,882 740
United Kingdom 66,040,229 93,788 704
Pakistan 203,841,217 310,403 657
Germany 82,979,100 137,903 602
Dominican Republic 10,266,149 18,485 555
Nigeria 195,875,237 356,669 549
North Korea 25,610,672 47,399 540

Page 5 of 8

Exercise 2
Create a program named distribute_race_awards_with_dictionary. This program
performs a simple lookup based upon integer input provided by the user at the console.
This program is different from a similar program created in a previous assignment in
that the lookup is performed using a Python dictionary.

When coding and testing this program, follow the approach that I take in the Part 2
tutorial video.

When this program is run, console sessions should look like this:

Please enter the place in which the participant finished (1, 2,
3, ...): 1
Participant place: 1
Participant award: Blue Ribbon

Please enter the place in which the participant finished (1, 2,
3, ...): 6
Participant place: 6
Participant award: Purple Ribbon

Please enter the place in which the participant finished (1, 2,
3, ...): 7
Participant place: 7
Participant award: Participant Ribbon

Please enter the place in which the participant finished (1, 2,
3, ...): 0
Participant place: 0
Participant award: Input Error - Place must be greater than 0

Page 6 of 8

Exercise 3
Create a program named analyze_slot_machine_tries_ignoring_duplicates. This
program should implement functionality that is the same as the Part 3 tutorial example,
except for the following differences:

• This program should not include duplicate colors from a single try when
accumulating counts for colors. Remember that a line of input data represents a
single try.

Please refer to the Part 3 tutorial for an approach to removing duplicate entries from
Python lists.

This program should process both test data files included in the starter files for the
assignment and produce appropriate output. These files are named:

• empty_file.txt
• slot_values.txt

When this program is run, console sessions should look like this:

Please enter the name of the input file: empty_file.txt

Please enter the name of the input file: slot_values.txt
Blue 2990
Green 2983
Orange 3024
Purple 3015
Red 2959
Yellow 3011

Page 7 of 8

Exercise 4
Create a program named create_population_density_reports_using_lambda_sort_keys
by copying the program that you created in Exercise 1 and pasting it into your PyCharm
project with this new name.

The new program is a refactoring of the original program created in Exercise 1. The
difference between these programs is that this new one is going to use lambda
expressions for the key keyword parameter on both of the sorts. The lambda
expressions will be a substitute for the named functions that were used for this purpose
in Exercise 1.

Please follow the approach that I used in my tutorial for this exercise when refactoring
your code.

Since this refactored code should exhibit the same behavior as the original code, you
can use the output listing shown in the instructions for Exercise 1 as the basis for your
testing.

Page 8 of 8

Tools
Use PyCharm to create and test all Python programs.

Submission Method
Follow the process that I demonstrated in the tutorial video on submitting your work.
This involves:

• Locating the properly named directory associated with your project in the file
system.

• Compressing that directory into a single .ZIP file using a utility program.
• Submitting the properly named zip file to the submission activity for this

assignment.

File and Directory Naming
Please name your Python program files as instructed in each exercise. Please use the
following naming scheme for naming your PyCharm project:

 surname_givenname_exercises_zelle_3e_chapter_11

If this were my own project, I would name my PyCharm project as follows:

 trainor_kevin_exercises_zelle_3e_chapter_11

Use a zip utility to create one zip file that contain the PyCharm project directory.
The zip file should be named according to the following scheme:

 surname_givenname_exercises_zelle_3e_chapter_11.zip

If this were my own project, I would name the zip file as follows:

 trainor_kevin_exercises_zelle_3e_chapter_11.zip

Due By
Please submit this assignment by the date and time shown in the Weekly Schedule.

Last Revised
2021-03-14

