
Page 1 of 13

Severance Chapter 14 Coding Assignment

General Instructions
My expectations for your work on coding assignment exercises will grow as we progress
through the course. In addition to applying any new programming techniques that have
been covered in the current chapter, I will be expecting you to follow all of the good
programming practices that we have adopted in the preceding weeks. Here is a quick
summary of good practices that we have covered so far:

• Include a single-line comment with name of program file.
• Include a single-line comment that describes the intent of the program.
• Place your highest-level code in a function named main.
• Your code should be factored such that there is a function in your program for

each part of the problem.
• Each function should contain code relating to the same thing – it should have

high cohesion.
• Functions should know as little as possible about the workings of other functions

– they should have low coupling.
• Include a final line of code in the program that executes the main function.
• Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor.

For example, place two blank lines between the code making up a function and
the code surrounding that function.

• Output printed by the program (both prompts and results) should be polite and
descriptive.

• Choose names for your variables that are properly descriptive.
• Choose names for your functions that are properly descriptive.
• Close all files before the conclusion of the program.
• Model your solution after the code that I demonstrate in the tutorial videos.
• Remember to test your program thoroughly before submitting your work.
• Your code must pass all relevant test cases. Make sure that it passes tests at the

boundaries created by if, else, and elif conditions in your program (boundary
value tests).

Page 2 of 13

Assignment Overview
The goal of this assignment is to create a custom Python class to hold data values. In a
previous assignment (Zelle 3e Chapter 11), I gave you a Python module named
my_countries.py. This module contained the custom Python class that I created named
Country. The Country class held data values related to countries, their population, and
their area. In that assignment, you used instances of the Country class to hold each of
your data records. You stored these instances of the Country class in a Python list in
order to store and sort the data records. Finally, you created reports by reading the
sorted list of instances and formatting the output.

In this assignment, you will be doing similar activities. The difference is that you will be
creating a new and different custom Python class. During the tutorial for this
assignment, we will begin by reviewing the Country class from our previous assignment.
In Part 0 of the tutorial, I will introduce a Cheat Sheet for creating custom classes and
use that Cheat Sheet to help you identify the components of a custom Python class. You
will be able to use the Cheat Sheet for the remainder of this assignment and you will
want keep a copy for it your future use. It should be very helpful when working on the
Final Project for our course.

The following is a summary of the steps that you will follow to complete this
assignment:

• Review the Cheat Sheet for the assignment. Do your best to use it to identify the
parts of the Country class. Both of these items are provided with the starter files
for this assignment.

• Exercise 1: Use the Cheat Sheet to help you create the basic version of a new

custom class named LandMammal. Instances of this class will be used to hold
data records regarding the world’s heaviest land mammals later in this
assignment. In exercise 1, you will only be creating a basic version of the
LandMammal class.

• Exercise 2: Using the basic version of the LandMammal class, you will be
creating instances of the class to hold data records. You will sort a list of these
records in two different orders to create two reports regarding land mammals.
You will do this reporting using the basic version of the LandMammal Class.

• Exercise 3: Using the Cheat Sheet and the basic version of the LandMammal
class as starters, you will create an evolved version of the LandMammal class.
The additional features added in this step will be implicit getter and setter code
that use the Python @property decorator. The additional code will allow this
evolved version of the class to prevent the creation of instances of the
LandMammal class that have invalid instance variable values.

Page 3 of 13

• Exercise 4: In this exercise, you modify the code from Exercise 2 to create a new
version of the reporting program. Here, you will demonstrate that you can add
error checking features to the reporting program simply by substituting the
evolved version of the LandMammal class for the basic version that we used in
Exercise 2. It is just that simple.

Please see detailed instructions for these four exercises on the following pages.

Page 4 of 13

Exercise 1
Create a Python module file named my_basic_land_mammals.py. This module should
contain the following:

1. A class named LandMammal that contains the basic implementation of a class
that holds data facts regarding the world’s largest land mammals.

2. A main() function that contains unit test cases for the LandMammal class.

This basic version of the LandMammal class should NOT contain any getter or setter
features. When doing this part of the assignment, follow the approach that I
demonstrated in the Part 1 tutorial video.

The LandMammal class should implement the following instance variables:

• name (string)
• minimum mass in pounds (int)
• maximum mass in pounds (int)

Your class should provide implementations of the following standard Python features:

• Constructor implemented with __init__()
• str() method implemented with __str__()
• repr() method implemented with __repr()

You will also need to provide a method to calculate and return the following attribute:

• calculate_variability_of_mass_in_pounds() returns an int.

In the main() function, create test cases for the following:

• the constructor
• the __str__() method
• the __repr__() method
• the calculate_variability_of_mass_in_pounds() method

When creating the custom class, rely on the Cheat Sheet and the steps that I have
demonstrated in the Part 1 tutorial video for guidance. Remember that the code from
the tutorial video has been provided in the starter files. So, you do NOT need to type in
the code from the tutorial video.

Page 5 of 13

When this program is run directly (rather than having been imported), the console
session should contain the unit testing output and should look like this:

Unit testing output follows...

Test Case #1: Test constructor
Passed

Test Case #2: Test str method
Passed

Test Case #3: Test repr method
Passed

Test Case #4: Test calculate_variability_of_mass_in_pounds
Passed

Please continue to Exercise 2 on the next page…

Page 6 of 13

Exercise 2
Create a program named create_land_mammal_mass_reports_using_basic_class. The
program will follow the same pattern as the program that I demonstrate in Part 2 of the
tutorial video. Instead of coding this program from scratch, you may find it easier to
copy the tutorial program from the starter files and change that code to meet the
requirements below.

Your program will create a list of LandMammal instances to hold the data facts from the
input file. Since this program uses the basic version of the LandMammal class, there will
be no checking done for invalid input values.

Follow the code that I demonstrate in Part 2 of the tutorial to sort the list of records in
two different orders to create reports as follows:

• BY LAND MAMMAL NAME
• BY DESCENDING VARIABILITY OF MASS IN POUNDS

Here is a hint for coding the proper format string to print the detail lines:

• print('{0:<20}{1: > 15,}{2: > 15,}{3: > 15,}'.format(

When your report is finished, test it using both the clean and dirty versions of the input
file:

• land_mammals.txt
• dirty_land_mammals.txt

 Note that because this report program uses the basic version of the class, the dirty
input file will lead to the creation of a dirty report (see below).

When testing, please check that the unit test output from the
my_basic_land_mammals.py module is NOT printed in the test output for this program.

Page 7 of 13

When this program is run, the console session should look like this:

Please enter input file name: land_mammals.txt

 BY LAND MAMMAL NAME

Land Mammal Minimum Mass Maximum Mass Variability of
Name in Pounds in Pounds Mass in Pounds
African elephant 10,000 24,000 14,000
American bison 700 2,200 1,500
Asian elephant 8,000 17,640 9,640
Black rhinoceros 1,500 4,000 2,500
Cape buffalo 1,100 2,200 1,100
Gaur 1,000 3,000 2,000
Giraffe 1,544 4,255 2,711
Hippopotamus 2,500 8,820 6,320
Water buffalo 660 2,200 1,540
White rhinoceros 3,000 9,920 6,920

 BY DESCENDING VARIABILITY OF MASS IN POUNDS

Land Mammal Minimum Mass Maximum Mass Variability of
Name in Pounds in Pounds Mass in Pounds
African elephant 10,000 24,000 14,000
Asian elephant 8,000 17,640 9,640
White rhinoceros 3,000 9,920 6,920
Hippopotamus 2,500 8,820 6,320
Giraffe 1,544 4,255 2,711
Black rhinoceros 1,500 4,000 2,500
Gaur 1,000 3,000 2,000
Water buffalo 660 2,200 1,540
American bison 700 2,200 1,500
Cape buffalo 1,100 2,200 1,100

Please enter input file name: dirty_land_mammals.txt

 BY LAND MAMMAL NAME

Land Mammal Minimum Mass Maximum Mass Variability of
Name in Pounds in Pounds Mass in Pounds
 700 2,200 1,500
African elephant -10,000 24,000 34,000
Asian elephant 8,000 17,640 9,640
Black rhinoceros 1,500 0 -1,500
Cape buffalo 1,100 2,200 1,100
Gaur 1,000 3,000 2,000
Giraffe 1,544 4,255 2,711

Page 8 of 13

Hippopotamus 2,500 8,820 6,320
Water buffalo 660 2,200 1,540
White rhinoceros 9,920 3,000 -6,920

 BY DESCENDING VARIABILITY OF MASS IN POUNDS

Land Mammal Minimum Mass Maximum Mass Variability of
Name in Pounds in Pounds Mass in Pounds
African elephant -10,000 24,000 34,000
Asian elephant 8,000 17,640 9,640
Hippopotamus 2,500 8,820 6,320
Giraffe 1,544 4,255 2,711
Gaur 1,000 3,000 2,000
Water buffalo 660 2,200 1,540
 700 2,200 1,500
Cape buffalo 1,100 2,200 1,100
Black rhinoceros 1,500 0 -1,500
White rhinoceros 9,920 3,000 -6,920

Page 9 of 13

Exercise 3
Create a Python module file named my_evolved_land_mammals.py by copying the
module created in Exercise 1 and making changes. This module should contain the
following:

1. A class named LandMammal that contains the evolved implementation of a class
that holds data facts regarding the world’s largest land mammals.

2. A main() function that contains unit test cases for the LandMammal class.

This evolved version of the LandMammal class SHOULD INCLUDE implicit getter and
setter features implemented using the Python @property decorator. When doing this
part of the assignment, follow the approach that I demonstrated in the Part 3 tutorial
video. It may also be helpful to consult the Cheat Sheet while doing this exercise.

The implicit setter code should check for the following input file data errors and raise
exceptions when they are found:

• Name is set to empty string.
• Minimum mass in pounds < 1.
• Maximum mass in pounds < 1.
• Maximum mass in pounds is less than minimum mass in pounds.

When writing the setter code and the related unit tests, follow the method that I
demonstrate in Part 3 of the Tutorial video.

When this program is run directly (rather than having been imported), the console
session should contain the unit testing output and should look like this:

Unit testing output follows...

Test Case #1: Test constructor
Passed

Test Case #2: Test str method
Passed

Test Case #3: Test repr method
Passed

Test Case #4: Test calculate_variability_of_mass_in_pounds
Passed

Test Case #5: Test passing empty string to name setter
Passed

Test Case #6: Test passing zero to minimum_mass_in_pounds setter
Passed

Page 10 of 13

Test Case #7: Test passing zero to maximum_mass_in_pounds setter
Passed

Test Case #8: Test passing lesser maximum value than minimum
value to mass in pounds setters
Passed

Please continue to Exercise 4 on the next page…

Page 11 of 13

Exercise 4
Create a program named create_land_mammal_mass_reports_using_evolved_class by
copying the create_land_mammal_mass_reports _using_basic_class program created in
exercise 2. When coding and testing this program, follow the approach that I take in the
Part 4 tutorial video. The changes that you make to the original program should
include:

• Change the import statement such that the LandMammal class is now imported
from the my_evolved_land_mammals.py module that you created in Exercise 3.

• No further changes should be required!

When testing, please check that the unit test output from the my_evolved
_land_mammals.py module is NOT printed in the test output for this program.

Note that because this report program uses the evolved version of the class, the dirty
input file will lead to a runtime error rather than a report showing dirty values.

When this program is run, the console sessions should look like this:

Please enter input file name: land_mammals.txt

 BY LAND MAMMAL NAME

Land Mammal Minimum Mass Maximum Mass Variability of
Name in Pounds in Pounds Mass in Pounds
African elephant 10,000 24,000 14,000
American bison 700 2,200 1,500
Asian elephant 8,000 17,640 9,640
Black rhinoceros 1,500 4,000 2,500
Cape buffalo 1,100 2,200 1,100
Gaur 1,000 3,000 2,000
Giraffe 1,544 4,255 2,711
Hippopotamus 2,500 8,820 6,320
Water buffalo 660 2,200 1,540
White rhinoceros 3,000 9,920 6,920

 BY DESCENDING VARIABILITY OF MASS IN POUNDS

Land Mammal Minimum Mass Maximum Mass Variability of
Name in Pounds in Pounds Mass in Pounds
African elephant 10,000 24,000 14,000
Asian elephant 8,000 17,640 9,640
White rhinoceros 3,000 9,920 6,920
Hippopotamus 2,500 8,820 6,320
Giraffe 1,544 4,255 2,711
Black rhinoceros 1,500 4,000 2,500

Page 12 of 13

Gaur 1,000 3,000 2,000
Water buffalo 660 2,200 1,540
American bison 700 2,200 1,500
Cape buffalo 1,100 2,200 1,100

Please enter input file name: dirty_land_mammals.txt
Traceback (most recent call last):
 File
"/Users/kevintrainor/Documents/____my_python_course_projects/trai
nor_kevin_exercises_severance_chapter_14/create_land_mammal_mass_
reports_using_evolved_class.py", line 57, in <module>
 main()
 File
"/Users/kevintrainor/Documents/____my_python_course_projects/trai
nor_kevin_exercises_severance_chapter_14/create_land_mammal_mass_
reports_using_evolved_class.py", line 10, in main
 mammals = get_mammals()
 File
"/Users/kevintrainor/Documents/____my_python_course_projects/trai
nor_kevin_exercises_severance_chapter_14/create_land_mammal_mass_
reports_using_evolved_class.py", line 27, in get_mammals
 LandMammal(name, int(minimum_mass_in_pounds_as_string),
int(maximum_mass_in_pounds_as_string))
 File
"/Users/kevintrainor/Documents/____my_python_course_projects/trai
nor_kevin_exercises_severance_chapter_14/my_evolved_land_mammals.
py", line 14, in __init__
 self.minimum_mass_in_pounds = int(minimum_mass_in_pounds)
 File
"/Users/kevintrainor/Documents/____my_python_course_projects/trai
nor_kevin_exercises_severance_chapter_14/my_evolved_land_mammals.
py", line 35, in minimum_mass_in_pounds
 raise AttributeError('The minimum_mass_in_pounds attribute
must be populated with an integer value > 0')
AttributeError: The minimum_mass_in_pounds attribute must be
populated with an integer value > 0

Page 13 of 13

Tools
Use PyCharm to create and test all Python programs.

Submission Method
Follow the process that I demonstrated in the tutorial video on submitting your work.
This involves:

• Locating the properly named directory associated with your project in the file
system.

• Compressing that directory into a single .ZIP file using a utility program.
• Submitting the properly named zip file to the submission activity for this

assignment.

File and Directory Naming
Please name your Python program files as instructed in each exercise. Please use the
following naming scheme for naming your PyCharm project:

 surname_givenname_exercises_severance_chapter_14

If this were my own project, I would name my PyCharm project as follows:

 trainor_kevin_exercises_severance_chapter_14

Use a zip utility to create one zip file that contain the PyCharm project directory.
The zip file should be named according to the following scheme:

 surname_givenname_exercises_severance_chapter_14.zip

If this were my own project, I would name the zip file as follows:

 trainor_kevin_exercises_severance_chapter_14.zip

Due By
Please submit this assignment by the date and time shown in the Weekly Schedule.

Last Revised
2021-03-25

