
Page 1 of 17

Final Project Assignment

Please Note
This Final Project assignment involves the analysis of a population data set published by the
Wisconsin Department of Health Services (WDHS). This data set divides the population into
two categories: Male and Female. I can only assume that this categorization scheme is useful
for the WDHS and its clients. For us, it represents a readily available data set that is easily
understood. Those are my motivations for having chosen it.

Nevertheless, I am sure that many of you are aware that not everyone in our world identifies as
either Male or Female. Rather, a significant number of people have a more nuanced gender
identity. I want to assure you that I have the greatest respect for the gender identity of all of
my students, my coworkers, and the general public. I encourage everyone to share in that
point of view.

Assignment Overview
In this Final Project Assignment, you will be expected to create and use a series of related
Python programs to analyze a sample population data set. The assignment is divided into 4
exercises. These exercises build upon each other, with results from one exercise being used in
the next exercise. The goal is to provide an experience for you that is reasonably similar to an
assignment that you might be given in the workplace.

The data set that you will be analyzing is population data for Milwaukee County from July 2014.
Please note that you will NOT need to download the data set from WDHS. I have provided the
data as one of the starter files for this assignment. This data set is one of many provided by the
Wisconsin Department of Health Services (WDHS). Similar data sets are available for other
Wisconsin counties and for other time periods. While you will only be analyzing one data set in
this Final Project, you can imagine that the code that you create will be eventually used by
others to analyze data sets for other counties and other time periods for which data sets are
available from WDHS.

You will be working more independently on this assignment than you have on the weekly
coding assignments from earlier in the semester. I will not be providing a tutorial video to
prepare you for each exercise in this assignment. Instead, I will be providing an overview
tutorial video for the entire Final Project that helps you understand the assignment more
completely and how the work flows through the 4 exercises. More important, the instructions
for each assignment will include more direction than the instructions from the weekly coding
assignments. This direction is meant to resemble specifications that a supervisor might provide
to a junior programmer in the workplace.

Despite this lesser level of tutorial direction on this assignment, you can expect the same level
of help and support from me. I am willing to discuss problems and strategies during the
remaining Online Lab Sessions. Also, I will continue to support your individual inquiries via the
iCourse-JIRA Service Desk. I want you to do as well as possible on this assignment. So, if you
are stuck on any part of the Final Project, please seek my help as soon as possible.

https://www.dhs.wisconsin.gov/
https://en.wikipedia.org/wiki/Gender_identity
https://en.wikipedia.org/wiki/Gender_identity
https://www.dhs.wisconsin.gov/population/milwaukee.htm

Page 2 of 17

Also, you should feel free to discuss strategies and problems with the Final Project with your
classmates. Conferring with each other is fair game. Feel free to show someone your broken
code and ask for advice. By contrast, giving your working code to other students is not allowed.
We want to offer help, not the code itself.

General Expectations for Work Submitted
When completing your work on the Final Project, you are expected to follow all of good
practices that we have covered during our course. Here is a summary of those good practices:

• Include a single-line comment with name of program file.
• Include a single-line comment that describes the intent of the program.
• Place your highest-level code in a function named main.
• Your code should be factored such that there is a function in your program for each part

of the problem.
• Each function should contain code relating to the same thing – it should have high

cohesion.
• Functions should know as little as possible about the workings of other functions – they

should have low coupling.
• If the Python file that you are creating is a regular executable program, include a final

line of code in the program that calls the main() function.
• Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor. For

example, place two blank lines between the code making up a function (or class) and
the code that surrounds that function (or class).

• Output printed by the program (both prompts and results) should be polite and
descriptive.

• Choose names for your variables that are properly descriptive.
• Choose names for your functions that are properly descriptive.
• Choose names for your classes that are properly descriptive
• Follow PEP-8 Python coding style guidelines for forming names of variables, functions,

and classes.
• Close all files before the conclusion of the program.
• Model your solution after the code that I demonstrate in the tutorial videos.
• Remember to test your program thoroughly before submitting your work.
• Your code must pass all relevant test cases. Make sure that it passes tests at the

boundaries created by if, else, and elif conditions in your program (boundary value
tests).

• If the python file that you are creating is a module that acts as a container for a reusable
Python class, then:

o Place your unit testing code for the class in the main() function.
o Include statements at the end of your module file that cause the main() function

to be called only when the module is run directly.
o Make sure that the code in main() is not called when the module is imported into

another program.

Page 3 of 17

• When coding a Python class:
o Make sure that you name the instance variables, the methods, and the class

itself exactly as specified in the instructions. Classes are often shared with other
developers. It is important that everyone involved in sharing the class knows
what names to expect for instance variables, methods, and the class itself.

o Make sure that all client code can access instance variables using Pythonic field
access (instance.fieldname).

o When typical getter/setter features are needed for an instance variable,
implement Pythonic getter/setter features using the @property decorators. DO
NOT create Non-Pythonic getter/setter methods with names like get_fieldname()
and set_fieldname().

o Never store values as instance variables that may be derived from other instance
variables. Instead, provide methods in the class with names like
calculate_derived_value().

o Always provide an __init__() constructor.
o Always provide a __str__() method.
o Always provide a __repr__() method.

Starter Files
I have provided starter files for this project in the following ZIP file:

• starter_files_for_python_course_final_project.zip

The ZIP file contains the following data files:

• raw_data.txt
• cleaned_data.txt

Please note that these two files have the same contents. You will be editing the
cleaned_data.txt file, making cleaning corrections to the data. When fully cleaned, this is the
file that you will use as input data during subsequent exercise steps. The raw_data.txt file is
only provided as a restarting point in case changes to the cleaned data get so confused that you
want to start over from the beginning.

Page 4 of 17

Exercise 1
Create a Python program named detect_row_level_data_entry_errors. When complete, you
will run this program to produce a diagnostic report that shows data entry errors that cause
row totals in the data to be out of balance. You will be expected to edit the cleaned_data.txt
input file and make corrections until running this program shows that all row-level errors have
been resolved.

I must confess that I created these data entry errors on purpose by corrupting the data that I
downloaded from WDHS. Data cleaning is an important part of data science and I wanted you
to have the experience of creating programs to support this task. I have provided a PDF copy of
the original data set in Appendix A of these directions. You should feel free to refer to these
data while you are finding and correcting data entry errors. An enterprising student might
conclude that one could correct all of the data simply by proofreading. Nevertheless, you are
expected to create this program that automatically exposes data entry errors. While it might
be feasible to correct this one data set by proofreading, it would not be feasible to take the
same approach to correcting data entry errors for a large volume of these data sets.

A first run of this program should provide the following console session output:

Please enter the input filename: cleaned_data.txt

 Row-Level Data Entry Errors

Age Group Males Females Total Error
0-14 97,680 93,991 191,671 0
15-19 32,800 32,479 65,319 -40
20-24 38,953 41,206 80,159 0
25-29 36,775 38,205 74,980 0
30-34 37,072 39,197 76,269 0
35-39 30,337 31,644 61,801 180
40-44 28,176 29,271 57,447 0
45-54 57,519 60,283 117,802 0
55-64 52,893 57,669 110,562 0
65-74 28,577 34,212 61,999 790
75-84 13,843 20,222 34,065 0
85+ 5,775 12,843 18,618 0
Total 460,340 491,642 951,982 0

Your next activity will be to solve the errors reported at the row level. A positive error indicates
that the sum of the Males value and the Females value is greater than the stated Total value. A
negative error indicates that the sum is less than the stated Total value. Refer to the printed
copy of the dataset available in Appendix A to identify and make the corrections needed using a
text editor.

Page 5 of 17

Continue running this program and making corrections in the cleaned_data.txt file until all row-
level data entry errors have been corrected and the output from the console session appears as
follows:

Please enter the input filename: cleaned_data.txt

 Row-Level Data Entry Errors

Age Group Males Females Total Error
0-14 97,680 93,991 191,671 0
15-19 32,840 32,479 65,319 0
20-24 38,953 41,206 80,159 0
25-29 36,775 38,205 74,980 0
30-34 37,072 39,197 76,269 0
35-39 30,337 31,464 61,801 0
40-44 28,176 29,271 57,447 0
45-54 57,519 60,283 117,802 0
55-64 52,893 57,669 110,562 0
65-74 28,577 34,212 62,789 0
75-84 13,743 20,822 34,565 0
85+ 5,775 12,843 18,618 0
Total 460,340 491,642 951,982 0

Please note: This program does NOT need to store data in custom objects based upon a custom
Python class. The input file will only need to be processed once. The file can be processed in its
current order. It does not need to be sorted.

The following is pseudocode that you may use to help design your program:

prompt for input filename
open input file using encoding utf8
print report heading

for line in input file:

split line into individual strings
 convert stings to ints as appropriate
 calculate row total
 calculate row error
 print line for a row (including error)

close file

When formatting the report lines, remember the following hints:

• Report lines are 50 characters wide.
• Each column is 10 characters wide.
• The report title is centered within the 50-character line.
• A format string that will be useful on the report title is: {0:^50}
• A format string that will be useful on the report detail line is: {1: > 10,}

Page 6 of 17

Exercise 2
Create a Python program named detect_column_level_data_entry_errors. When complete, you
will run this program to produce a diagnostic report that shows data entry errors that cause
column totals in the data to be out of balance. You will be expected to edit the
cleaned_data.txt input file and make corrections until running this program shows that all
column-level errors have been resolved.

Please remember the advice that I gave above regarding the need to write a program and use it
to correct the column-level data errors. I realize that it can be done by proofreading alone.
Nevertheless, your job is to create a program that automates error detection.

Provided that you have already corrected the row-level data entry errors during Exercise 1, a
first run of this program should provide the following console session output:

Please enter the input filename: cleaned_data.txt

 Column-Level Data Entry Errors

Age Group Males Females Total
0-14 97,680 93,991 191,671
15-19 32,840 32,479 65,319
20-24 38,953 41,206 80,159
25-29 36,775 38,205 74,980
30-34 37,072 39,197 76,269
35-39 30,337 31,464 61,801
40-44 28,176 29,271 57,447
45-54 57,519 60,283 117,802
55-64 52,893 57,669 110,562
65-74 28,577 34,212 62,789
75-84 13,843 20,222 34,065
85+ 5,775 12,843 18,618
Total 460,340 491,642 951,982
Error -100 600 500

Your next activity will be to solve the errors reported at the column level. Error values are
computed for each column. A positive error indicates that the sum of the values for each age
group category is greater than the stated column total value. A negative error indicates that
the sum of the values for each age group category is less than the stated column total value.
Refer to the printed copy of the dataset available in Appendix A to identify and make the
corrections needed using a text editor.

Page 7 of 17

Continue running this program and making corrections in the cleaned_data.txt file until all
column-level data entry errors have been corrected and the output from the console session
appears as follows:

Please enter the input filename: cleaned_data.txt

 Column-Level Data Entry Errors

Age Group Males Females Total
0-14 97,680 93,991 191,671
15-19 32,840 32,479 65,319
20-24 38,953 41,206 80,159
25-29 36,775 38,205 74,980
30-34 37,072 39,197 76,269
35-39 30,337 31,464 61,801
40-44 28,176 29,271 57,447
45-54 57,519 60,283 117,802
55-64 52,893 57,669 110,562
65-74 28,577 34,212 62,789
75-84 13,743 20,822 34,565
85+ 5,775 12,843 18,618
Total 460,340 491,642 951,982
Error 0 0 0

Please note: This program does NOT need to store data in custom objects based upon a custom
Python class. The input file will only need to be processed once. The file can be processed in its
current order. It does not need to be sorted.

The following is pseudocode that you may use to help design your program:

prompt for input filename
open input file using encoding utf8
initialize accumulators for males, females, total

print report heading
for line in input file:

split line into individual strings
 convert stings to ints as appropriate
 print line for a row
 if age group category name shows this is NOT the total line:
 add values from this line to accumulators
 else:
 compute the column error values
print the column error line
close file

Page 8 of 17

When formatting the report lines, remember the following hints:

• Report lines are 40 characters wide.
• Each column is 10 characters wide.
• The report title is centered within the 40-character line.
• A format string that will be useful on the report title is: {0:^40}
• A format string that will be useful on the report detail line is: {1: > 10,}

Please continue to Exercise 3 (below)

Page 9 of 17

Exercise 3
Create a Python module file named my_population_groups.py. This module will hold the
PopulationGroup class and related test code. In this exercise, you will be creating the
PopulationGroup class and conducting a full unit test. In Exercise 4, you will be importing this
module and using the PopulationGroup class to create a series of analysis reports.

The requirements for the PopulationGroup class include the following:

• An instance variable category that is expected to hold a string.
• An instance variable male_count this is expected to hold an int.
• An instance variable female_count this expected to hold an int.
• A method calculate_total_count that is expected to return an int.
• A @property-based getter/setter pair for the category instance variable. category may

not be set to the empty string.
• A @property-based getter/setter pair for the male_count instance variable. male_count

may not be set to a value less than zero.
• A @property-based getter/setter pair for the female_count instance variable.

female_count may not be set to a value less than zero.
• An __init__ constructor that allows all instance variables to be set.
• A __str__ method that returns a proper string representation of the PopulationGroup

object.
• A __repr__ method that returns a proper string representation of the PopulationGroup

object.

Please note: you must use the exact names listed above for instance variables, the methods,
and the class itself. Using different names will result in points being lost when this exercise is
graded.

When coding and testing this module, I recommend that you refer to the separate document
Cheat Sheet: Create Custom Python Class. A link to this document has been provided in the
weekly schedule.

The module should also contain a main() function the contains unit test code for the
PopulationGroup class. This unit test code should reflect the standards and good practices for
unit testing of classes that have been demonstrated in our course.

Page 10 of 17

When this program is run directly (rather than having been imported), the console session
should contain the unit testing output and should look like this:

Unit testing output follows...

Test 1: Test Constructor
Passed

Test 2: Attempt to set category attribute to empty string
Passed

Test 3: Attempt to set male_count attribute to negative value
Passed

Test 4: Attempt to set female_count attribute to negative value
Passed

Test 5: Test calculate_total_count() method
Passed

T Test 6: Test __str__ Method
Passed

Test 7: Test __repr__ Method
Passed

Please continue to Exercise 4 (below)

Page 11 of 17

Exercise 4
Create a Python program named create_data_analysis_reports. When complete, you will run
this program to produce a series of eight data analysis reports that will help you and your
clients understand the data set. These reports include:

• Counts by Age Group
• Percentages by Age Group
• Counts by Descending Total Count
• Percentages by Descending Total Count
• Counts by Descending Female Count
• Percentages by Descending Female Count
• Counts by Descending Male Count
• Percentages by Descending Male Count

These eight reports are expected to print in the order shown. Interleaving the Counts-based
reports with the Percentages-based reports means that the data will need to be sorted half as
many times. Since this is a significant savings in processing, we will want to take advantage of
it.

When this program is run, the following console session output should be generated:

Please enter the input filename: cleaned_data.txt

 Counts by Age Group

Age Group Males Females Total
0-14 97,680 93,991 191,671
15-19 32,840 32,479 65,319
20-24 38,953 41,206 80,159
25-29 36,775 38,205 74,980
30-34 37,072 39,197 76,269
35-39 30,337 31,464 61,801
40-44 28,176 29,271 57,447
45-54 57,519 60,283 117,802
55-64 52,893 57,669 110,562
65-74 28,577 34,212 62,789
75-84 13,743 20,822 34,565
85+ 5,775 12,843 18,618
Total 460,340 491,642 951,982

Page 12 of 17

 Percentages by Age Group

Age Group Males Females Total
0-14 21.22% 19.12% 20.13%
15-19 7.13% 6.61% 6.86%
20-24 8.46% 8.38% 8.42%
25-29 7.99% 7.77% 7.88%
30-34 8.05% 7.97% 8.01%
35-39 6.59% 6.40% 6.49%
40-44 6.12% 5.95% 6.03%
45-54 12.49% 12.26% 12.37%
55-64 11.49% 11.73% 11.61%
65-74 6.21% 6.96% 6.60%
75-84 2.99% 4.24% 3.63%
85+ 1.25% 2.61% 1.96%
Total 100.00% 100.00% 100.00%

 Counts by Descending Total Count

Age Group Males Females Total
0-14 97,680 93,991 191,671
45-54 57,519 60,283 117,802
55-64 52,893 57,669 110,562
20-24 38,953 41,206 80,159
30-34 37,072 39,197 76,269
25-29 36,775 38,205 74,980
15-19 32,840 32,479 65,319
65-74 28,577 34,212 62,789
35-39 30,337 31,464 61,801
40-44 28,176 29,271 57,447
75-84 13,743 20,822 34,565
85+ 5,775 12,843 18,618
Total 460,340 491,642 951,982

 Percentages by Descending Total Count

Age Group Males Females Total
0-14 21.22% 19.12% 20.13%
45-54 12.49% 12.26% 12.37%
55-64 11.49% 11.73% 11.61%
20-24 8.46% 8.38% 8.42%
30-34 8.05% 7.97% 8.01%
25-29 7.99% 7.77% 7.88%
15-19 7.13% 6.61% 6.86%
65-74 6.21% 6.96% 6.60%
35-39 6.59% 6.40% 6.49%
40-44 6.12% 5.95% 6.03%
75-84 2.99% 4.24% 3.63%
85+ 1.25% 2.61% 1.96%
Total 100.00% 100.00% 100.00%

Page 13 of 17

 Counts by Descending Female Count

Age Group Males Females Total
0-14 97,680 93,991 191,671
45-54 57,519 60,283 117,802
55-64 52,893 57,669 110,562
20-24 38,953 41,206 80,159
30-34 37,072 39,197 76,269
25-29 36,775 38,205 74,980
65-74 28,577 34,212 62,789
15-19 32,840 32,479 65,319
35-39 30,337 31,464 61,801
40-44 28,176 29,271 57,447
75-84 13,743 20,822 34,565
85+ 5,775 12,843 18,618
Total 460,340 491,642 951,982

 Percentages by Descending Female Count

Age Group Males Females Total
0-14 21.22% 19.12% 20.13%
45-54 12.49% 12.26% 12.37%
55-64 11.49% 11.73% 11.61%
20-24 8.46% 8.38% 8.42%
30-34 8.05% 7.97% 8.01%
25-29 7.99% 7.77% 7.88%
65-74 6.21% 6.96% 6.60%
15-19 7.13% 6.61% 6.86%
35-39 6.59% 6.40% 6.49%
40-44 6.12% 5.95% 6.03%
75-84 2.99% 4.24% 3.63%
85+ 1.25% 2.61% 1.96%
Total 100.00% 100.00% 100.00%

 Counts by Descending Male Count

Age Group Males Females Total
0-14 97,680 93,991 191,671
45-54 57,519 60,283 117,802
55-64 52,893 57,669 110,562
20-24 38,953 41,206 80,159
30-34 37,072 39,197 76,269
25-29 36,775 38,205 74,980
15-19 32,840 32,479 65,319
35-39 30,337 31,464 61,801
65-74 28,577 34,212 62,789
40-44 28,176 29,271 57,447
75-84 13,743 20,822 34,565
85+ 5,775 12,843 18,618
Total 460,340 491,642 951,982

Page 14 of 17

 Percentages by Descending Male Count

Age Group Males Females Total
0-14 21.22% 19.12% 20.13%
45-54 12.49% 12.26% 12.37%
55-64 11.49% 11.73% 11.61%
20-24 8.46% 8.38% 8.42%
30-34 8.05% 7.97% 8.01%
25-29 7.99% 7.77% 7.88%
15-19 7.13% 6.61% 6.86%
35-39 6.59% 6.40% 6.49%
65-74 6.21% 6.96% 6.60%
40-44 6.12% 5.95% 6.03%
75-84 2.99% 4.24% 3.63%
85+ 1.25% 2.61% 1.96%
Total 100.00% 100.00% 100.00%

The recommended way to produce these reports is to create two reusable methods: one
method to create a Count-based report, and the other method to create a Percentage-based
report. When testing your code, this probably means that you will test all 4 of the Count-based
reports before you start coding and testing for the 4 Percentage-based reports. Just remember
that before you are finished, you need to be sure that the reports are printing in the proper
interleaved order.

The following is pseudocode that you may use to help design your main function:

do build_population_group_list
do calculate_column_totals

sort population groups by category
do create_count_based_report
do create_percentage_based_report

sort population groups by total_count descending
do create_count_based_report
do create_percentage_based_report

sort population groups by female_count descending
do create_count_based_report
do create_percentage_based_report

sort population groups by male_count descending
do create_count_based_report
do create_percentage_based_report

Page 15 of 17

The following is pseudocode that you may use to help design your build_population_group_list
function:

prompt for infile
open infile with encoding utf8
initalize population_groups_list

for line in infile:
 split line into strings
 convert male_count and female_count to ints
 construct a new Population Group instance
 if this line is NOT the total line:
 construct a new Population Group instance
 append instance to population_groups list
close infile
return population_groups_list

The following is pseudocode that you may use to help design your calculate_column_totals
function:

Receive population_groups_list as parameter
initialize male_total, female_total, overall_total

for group in population_groups_list:
 accumulate male_total, female_total, overall_total

return male_total, female_total, overall_total

The following is pseudocode that you may use to help design your create_count_based_report
function:

receive population_groups_list, male_total, female_total,

overall_total, title as parameters
print blank lines
print title
print column headings

for group in population_groups_list:
 print a report line using values from PopulationGroup instance

print column total line using male_total, female_total, overall_total

Page 16 of 17

The following is pseudocode that you may use to help design your
create_percentage_based_report function:

receive population_groups_list, male_total, female_total,
 overall_total, title as parameters
print blank lines
print title
print column headings

for group in population_groups_list:
 use group instance to get male_count, female_count,
 total_count
 calculate percentages based upon male_total,
 female_total, overall_total
 print a report line using percentages

print column total line where all values are 100%

When formatting the report lines, remember the following hints:

• Report lines are 40 characters wide.
• Each column is 10 characters wide.
• The report title is centered within the 40-character line.
• A format string that will be useful on the report title is:

o {0:^40}
• A format string that will be useful on a Counts-based report detail line is:

o {1: > 10,}
• A format string that will be useful on a Percent-based report detail line is:

o {1: > 10.2%}

Page 17 of 17

Tools
Use PyCharm to create and test all python programs.

Submission Method
Follow the process that I demonstrated in the tutorial video on submitting your work. This
involves:

• Locating the properly named directory associated with your project in the file system.
• Compressing that directory into a single .ZIP file using a utility program.
• Submitting the properly named zip file to the submission activity for this assignment.

File and Directory Naming
Please name your Python program files as instructed in each exercise. Please use the following
naming scheme for naming your PyCharm project:

 surname_givenname_final_project

If this were my own project, I would name my PyCharm project as follows:

 trainor_kevin_final_project

Use a zip utility to create one zip file that contain the PyCharm project directory. The zip
file should be named according to the following scheme:

 surname_givenname_final_project.zip

If this were my own project, I would name the zip file as follows:

 trainor_kevin_final_project.zip

Due By
Please submit this assignment by the date and time shown in the Weekly Schedule.

Last Revised
2020-10-24

Milwaukee County: July 1, 2014 Population

Age Group Males Females Total Percent Change from 2010

0-14 97,680 93,991 191,671 -3%

15-19 32,840 32,479 65,319 -7%

20-24 38,953 41,206 80,159 3%

25-29 36,775 38,205 74,980 -4%

30-34 37,072 39,197 76,269 12%

35-39 30,337 31,464 61,801 3%

40-44 28,176 29,271 57,447 -3%

45-54 57,519 60,283 117,802 -7%

55-64 52,893 57,669 110,562 9%

65-74 28,577 34,212 62,789 21%

75-84 13,743 20,822 34,565 -10%

85+ 5,775 12,843 18,618 -2%

Total 460,340 491,642 951,982 0%

Age Group Males Females Total Percent Change from 2010

0-17 117,230 113,366 230,596 -2%

18-44 184,603 192,447 377,050 1%

45-64 110,412 117,952 228,364 0%

65+ 48,095 67,877 115,972 6%

Total 460,340 491,642 951,982 0%

Source: Office of Health Informatics, Division of Public Health, Wisconsin

Department of Health Services

Appendix A

