
Python Programming, 3/e 1

Python Programming:
An Introduction To
Computer Science

Chapter 10
Defining Classes

Python Programming, 3/e 2

Objectives
 To appreciate how defining new classes

can provide structure for a complex
program.

 To be able to read and write Python
class definitions.

 To understand the concept of
encapsulation and how it contributes to
building modular and maintainable
programs.

Python Programming, 3/e 3

Objectives
 To be able to write programs involving

simple class definitions.
 To be able to write interactive graphics

programs involving novel (programmer
designed) widgets.

Python Programming, 3/e 4

Quick Review of Objects
 In the last three chapters we’ve developed

techniques for structuring the computations
of the program.

 We’ll now take a look at techniques for
structuring the data that our programs use.

 So far, our programs have made use of
objects created from pre-defined classes such
as Circle. In this chapter we’ll learn how to
write our own classes to create novel objects.

Python Programming, 3/e 5

Quick Review of Objects
 In chapter four an object was defined

as an active data type that knows
stuff and can do stuff.

 More precisely, an object consists of:
1. A collection of related information.
2. A set of operations to manipulate that

information.

Python Programming, 3/e 6

Quick Review of Objects
 The information is stored inside the

object in instance variables.
 The operations, called methods, are

functions that “live” inside the object.
 Collectively, the instance variables and

methods are called the attributes of an
object.

Python Programming, 3/e 7

Quick Review of Objects
 A Circle object will have instance

variables such as center, which
remembers the center point of the
circle, and radius, which stores the
length of the circle’s radius.

 The draw method examines the
center and radius to decide which
pixels in a window should be colored.

Python Programming, 3/e 8

Quick Review of Objects
 The move method will change the value

of center to reflect the new position
of the circle.

 All objects are said to be an instance of
some class. The class of an object
determines which attributes the object
will have.

 A class is a description of what its
instances will know and do.

Python Programming, 3/e 9

Quick Review of Objects
 New objects are created from a class by

invoking a constructor. You can think of
the class itself as a sort of factory for
stamping out new instances.

 Consider making a new circle object:
myCircle = Circle(Point(0,0),20)

 Circle, the name of the class, is used
to invoke the constructor.

Python Programming, 3/e 10

Quick Review of Objects
myCircle = Circle(Point(0,0), 20)

 This statement creates a new Circle
instance and stores a reference to it in
the variable myCircle.

 The parameters to the constructor are
used to initialize some of the instance
variables (center and radius) inside
myCircle.

Python Programming, 3/e 11

Quick Review of Objects
myCircle = Circle(Point(0,0), 20)

 Once the instance has been created, it
can be manipulated by calling on its
methods:
myCircle.draw(win)
myCircle.move(dx,dy)

Python Programming, 3/e 12

Cannonball Program
Specification
 Let’s try to write a program that

simulates the flight of a cannonball or
other projectile.

 We’re interested in how far the
cannonball will travel when fired at
various launch angles and initial
velocities.

Python Programming, 3/e 13

Cannonball Program
Specification
 The input to the program will be the

launch angle (in degrees), the initial
velocity (in meters per second), and the
initial height (in meters) of the
cannonball.

 The output will be the distance that the
projectile travels before striking the
ground (in meters).

Python Programming, 3/e 14

Cannonball Program
Specification
 The acceleration of gravity near the

earth’s surface is roughly 9.8 m/s/s.
 If an object is thrown straight up at 20

m/s, after one second it will be
traveling upwards at 10.2 m/s. After
another second, its speed will be .4
m/s. Shortly after that the object will
start coming back down to earth.

Python Programming, 3/e 15

Cannonball Program
Specification
 Using calculus, we could derive a

formula that gives the position of the
cannonball at any moment of its flight.

 However, we’ll solve this problem with
simulation, a little geometry, and the
fact that the distance an object travels
in a certain amount of time is equal to
its rate times the amount of time
(d = rt).

Python Programming, 3/e 16

Designing the Program
 Given the nature of the problem, it’s

obvious we need to consider the flight
of the cannonball in two dimensions:
it’s height and the distance it travels.

 Let’s think of the position of the
cannonball as the point (x, y) where x is
the distance from the starting point and
y is the height above the ground.

Python Programming, 3/e 17

Designing the Program
 Suppose the ball starts at position (0,0),

and we want to check its position every
tenth of a second.

 In that time interval it will have moved
some distance upward (positive y) and
some distance forward (positive x). The
exact distance will be determined by
the velocity in that direction.

Python Programming, 3/e 18

Designing the Program
 Since we are ignoring wind resistance, x

will remain constant through the flight.
 However, y will change over time due

to gravity. The y velocity will start out
positive and then become negative as
the cannonball starts to fall.

Python Programming, 3/e 19

Designing the Program
Input the simulation parameters: angle,
velocity, height, interval.

Calculate the initial position of the
cannonball: xpos, ypos

Calculate the initial velocities of the
cannonball: xvel, yvel

While the cannonball is still flying:

Update the values of xpos, ypos, and
yvel for interval seconds further into
the flight

Output the distance traveled as xpos

Python Programming, 3/e 20

Designing the Program

 Using step-wise refinement:
def main():

angle = float(input("Enter the launch angle (in degrees): "))
vel = float(input("Enter the initial velocity (in meters/sec): "))
h0 = float(input("Enter the initial height (in meters): "))
time = float(input("Enter the time interval between position calculations: "))

 Calculating the initial position for the cannonball
is also easy. It’s at distance 0 and height h0!

xpos = 0
ypos = h0

Python Programming, 3/e 21

Designing the Program

 If we know the magnitude of the velocity and
the angle theta, we can calculate
yvel=velocity*sin(theta)and
xvel=velocity*cos(theta).

Python Programming, 3/e 22

Designing the Program
 Our input angle is in degrees, and the Python

math library uses radians.
 theta = math.radians(angle)

xvel = vel * cos(theta)
yvel = vel * sin(theta)

 In the main loop, we want to keep updating
the position of the ball until it reaches the
ground:
while ypos >= 0.0:

 We used >= 0 so the loop will start if the ball
starts out on the ground.

Python Programming, 3/e 23

Designing the Program
 Each time through the loop we want to

update the state of the cannonball to move it
time seconds farther.

 Since we assume there is no wind resistance,
xvel remains constant.

 Say a ball is traveling at 30 m/s and is 50 m
from the firing point. In one second it will be
50 + 30 meters away. If the time increment
is .1 second it will be 50 + 30*.1 = 53 meters
distant.

 xpos = xpos + time * xvel

Python Programming, 3/e 24

Designing the Program
 Working with yvel is slightly more

complicated since gravity causes the y-
velocity to change over time.

 Each second, yvel must decrease by 9.8
m/s, the acceleration due to gravity.

 In 0.1 seconds the velocity will decrease by
0.1(9.8) = .98 m/s.

 The velocity at the end of the time interval:
yvel1 = yvel – time * 9.8

Python Programming, 3/e 25

Designing the Programs
 To calculate how far the cannonball travels

over the interval, we need to calculate its
average vertical velocity over the interval.

 Since the velocity due to gravity is constant, it
is simply the average of the starting and
ending velocities times the length of the
interval:
ypos = ypos + time * (yvel + yvel1)/2.0

Python Programming, 3/e 26

Designing Programs
cball1.py
Simulation of the flight of a cannon ball (or other projectile)
This version is not modularized.

from math import pi, sin, cos

def main():
angle = float(input("Enter the launch angle (in degrees): "))
vel = float(input("Enter the initial velocity (in meters/sec): "))
h0 = float(input("Enter the initial height (in meters): "))
time = float(input("Enter the time interval between position calculations: "))

radians = (angle * pi)/180.0
xpos = 0
ypos = h0
xvel = vel * cos(radians)
yvel = vel * sin(radians)
while ypos >= 0:

xpos = xpos + time * xvel
yvel1 = yvel - 9.8 * time
ypos = ypos + time * (yvel + yvel1)/2.0
yvel = yvel1

print("\nDistance traveled: {0:0.1f} meters." .format(xpos)

Python Programming, 3/e 27

Modularizing the Program
 During program development, we

employed step-wise refinement (and
top-down design), but did not divide
the program into functions.

 While this program is fairly short, it is
complex due to the number of
variables.

Python Programming, 3/e 28

Modularizing the Program
def main():

angle, vel, h0, time = getInputs()

xpos, ypos = 0, h0

xvel, yvel = getXYComponents(vel, angle)

while ypos >= 0:

xpos, ypos, yvel = updateCannonBall(time, xpos, ypos, xvel, yvel)

print("\nDistance traveled: {0:0.1f} meters.".format(xpos)

 It should be obvious what each of these
helper functions does based on their name
and the original program code.

Python Programming, 3/e 29

Modularizing the Program
 This version of the program is more concise!
 The number of variables has been reduced

from 10 to 8, since theta and yvel1 are
local to getXYComponents and
updateCannonBall, respectively.

 This may be simpler, but keeping track of the
cannonball still requires four pieces of
information, three of which change from
moment to moment!

Python Programming, 3/e 30

Modularizing the Program
 All four variables, plus time, are

needed to compute the new values of
the three that change.

 This gives us a function with five
parameters and three return values.

 Yuck! There must be a better way!

Python Programming, 3/e 31

Modularizing the Program
 There is a single real-world cannonball object,

but it requires four pieces of information:
xpos, ypos, xvel, x and yvel.

 Suppose there was a Projectile class that
“understood” the physics of objects like
cannonballs. An algorithm using this
approach would create and update an object
stored in a single variable.

Python Programming, 3/e 32

Modularizing the Program
 Using our object-based approach:

def main():
angle, vel, h0, time = getInputs()
cball = Projectile(angle, vel, h0)
while cball.getY() >= 0:

cball.update(time)
print("\nDistance traveled: {0:0.1f} meters.".format(cball.getX()))

 To make this work we need a Projectile
class that implements the methods update,
getX, and getY.

Python Programming, 3/e 33

Example: Multi-Sided Dice
 A normal die (singular of dice) is a cube

with six faces, each with a number from
one to six.

 Some games use special dice with a
different number of sides.

 Let’s design a generic class MSDie to
model multi-sided dice.

Python Programming, 3/e 34

Example: Multi-Sided Dice
 Each MSDie object will know two

things:
 How many sides it has.
 It’s current value

 When a new MSDie is created, we
specify n, the number of sides it will
have.

Python Programming, 3/e 35

Example: Multi-Sided Dice
 We have three methods that we can

use to operate on the die:
 roll – set the die to a random value

between 1 and n, inclusive.
 setValue – set the die to a specific value

(i.e. cheat)
 getValue – see what the current value is.

Python Programming, 3/e 36

Example: Multi-Sided Dice
>>> die1 = MSDie(6)
>>> die1.getValue()
1
>>> die1.roll()
>>> die1.getValue()
5
>>> die2 = MSDie(13)
>>> die2.getValue()
1
>>> die2.roll()
>>> die2.getValue()
9
>>> die2.setValue(8)
>>> die2.getValue()
8

Python Programming, 3/e 37

Example: Multi-Sided Dice
 Using our object-oriented vocabulary, we create a die

by invoking the MSDie constructor and providing the
number of sides as a parameter.

 Our die objects will keep track of this number
internally as an instance variable.

 Another instance variable is used to keep the current
value of the die.

 We initially set the value of the die to be 1 because
that value is valid for any die.

 That value can be changed by the roll and
setRoll methods, and returned by the getValue
method.

Python Programming, 3/e 38

Example: Multi-Sided Dice
msdie.py
Class definition for an n-sided die.

from random import randrange

class MSDie:

def __init__(self, sides):
self.sides = sides
self.value = 1

def roll(self):
self.value = randrange(1, self.sides+1)

def getValue(self):
return self.value

def setValue(self, value):
self.value = value

Python Programming, 3/e 39

Example: Multi-Sided Dice
 Class definitions have the form
class <class-name>:

<method-definitions>

 Methods look a lot like functions! Placing the
function inside a class makes it a method of
the class, rather than a stand-alone function.

 The first parameter of a method is usually
named self, which is a reference to the
object on which the method is acting.

Python Programming, 3/e 40

Example: Multi-Sided Dice
 Suppose we have a main function that

executes die1.setValue(8).
 Just as in function calls, Python executes the

following four-step sequence:
 main suspends at the point of the method

application. Python locates the appropriate
method definition inside the class of the object to
which the method is being applied. Here, control
is transferred to the setValue method in the
MSDie class, since die1 is an instance of MSDie.

Python Programming, 3/e 41

Example: Multi-Sided Dice
 The formal parameters of the method get

assigned the values supplied by the actual
parameters of the call. In the case of a
method call, the first formal parameter
refers to the object:
self = die1
value = 8

 The body of the method is executed.

Python Programming, 3/e 42

Example: Multi-Sided Dice
 Control returns to the point just after

where the method was called. In this case,
it is immediately following
die1.setValue(8).

 Methods are called with one parameter,
but the method definition itself includes
the self parameter as well as the
actual parameter.

Python Programming, 3/e 43

Example: Multi-Sided Dice
 The self parameter is a bookkeeping

detail. We can refer to the first formal
parameter as the self parameter and
other parameters as normal
parameters. So, we could say
setValue uses one normal parameter.

Python Programming, 3/e 44

Example: Multi-Sided Dice

Python Programming, 3/e 45

Example: Multi-Sided Dice
 Objects contain their own data. Instance

variables provide storage locations inside of
an object.

 Instance variables are accessed by name
using our dot notation:
<object>.<instance-var>

 Looking at setValue, we see self.value
refers to the instance variable value inside
the object. Each MSDie object has its own
value.

Python Programming, 3/e 46

Example: Multi-Sided Dice
 Certain methods have special meaning.

These methods have names that start
and end with two _’s.

 __init__ is the object contructor.
Python calls this method to initialize a
new MSDie. __init__ provides initial
values for the instance variables of an
object.

Python Programming, 3/e 47

Example: Multi-Sided Dice
 Outside the class, the constructor is

referred to by the class name:
die1 = MSDie(6)

 When this statement is executed, a new
MSDie object is created and __init__
is executed on that object.

 The net result is that die1.sides is
set to 6 and die1.value is set to 1.

Python Programming, 3/e 48

Example: Multi-Sided Dice
 Instance variables can remember the

state of a particular object, and this
information can be passed around the
program as part of the object.

 This is different than local function
variables, whose values disappear when
the function terminates.

Python Programming, 3/e 49

Example: The Projectile Class
 This class will need a constructor to initialize

instance variables, an update method to
change the state of the projectile, and getX
and getY methods that can report the
current position.

 In the main program, a cannonball can be
created from the initial angle, velocity, and
height:
cball = Projectile(angle, vel, h0)

Python Programming, 3/e 50

Example: The Projectile Class
 The Projectile class must have an
__init__ method that will use these
values to initialize the instance variables
of cball.

 These values will be calculated using
the same formulas as before.

Python Programming, 3/e 51

Example: The Projectile Class
class Projectile:

def __init__(self, angle, velocity, height):
self.xpos = 0.0
self.ypos = height
theta = math.radians(angle)
self.xvel = velocity * cos(theta)
self.yvel = velocity * sin(theta)

 We’ve created four instance variables
(self.???). Since the value of theta is not
needed later, it is a normal function variable.

Python Programming, 3/e 52

Example: The Projectile Class
 The methods to access the X and Y

position are straightforward.

def getY(self):

return self.ypos

def getX(self):

return self.xpos

Python Programming, 3/e 53

Example: The Projectile Class
 The last method is update, where we’ll take

the time interval and calculate the updated X
and Y values.

def update(self, time):

self.xpos = self.xpos + time * self.xvel

yvel1 = self.yvel - 9.8 * time

self.ypos = self.ypos + time * (self.yvel + yvel1) / 2.0

self.yvel = yvel1

 yvel1 is a temporary variable.

Python Programming, 3/e 54

Data Processing with Class
 A class is useful for modeling a real-world

object with complex behavior.
 Another common use for objects is to group

together a set of information that describes a
person or thing.
 Eg., a company needs to keep track of information

about employees (an Employee class with
information such as employee’s name, social
security number, address, salary, etc.)

Python Programming, 3/e 55

Data Processing with Class
 A grouping of information like this is

often called a record.
 Let’s try a simple data processing

example!
 A typical university measures courses in

terms of credit hours, and grade point
averages are calculated on a 4 point
scale where an “A” is 4 points, a “B” is
three, etc.

Python Programming, 3/e 56

Data Processing with Class
 Grade point averages are generally

computed using quality points. If a class
is worth 3 credit hours and the student
gets an “A”, then he or she earns
3(4) = 12 quality points. To calculate
the GPA, we divide the total quality
points by the number of credit hours
completed.

Python Programming, 3/e 57

Data Processing with Class
 Suppose we have a data file that

contains student grade information.
 Each line of the file consists of a

student’s name, credit-hours, and
quality points.
Adams, Henry 127 228
Comptewell, Susan 100 400
DibbleBit, Denny 18 41.5
Jones, Jim 48.5 155
Smith, Frank 37 125.33

Python Programming, 3/e 58

Data Processing with Class
 Our job is to write a program that reads

this file to find the student with the best
GPA and print out their name, credit-
hours, and GPA.

 The place to start? Creating a Student
class!

 We can use a Student object to store
this information as instance variables.

Python Programming, 3/e 59

Data Processing with Class
class Student:

def __init__(self, name, hours, qpoints):
self.name = name
self.hours = float(hours)
self.qpoints = float(qpoints)

 The values for hours are converted to
float to handle parameters that may be
floats, ints, or strings.

 To create a student record:
aStudent = Student("Adams, Henry", 127, 228)

 The coolest thing is that we can store all the
information about a student in a single
variable!

Python Programming, 3/e 60

Data Processing with Class
 We need to be able to access this information, so we

need to define a set of accessor methods.
def getName(self):

return self.name

def getHours(self):
return self.hours

def getQPoints(self):
return self.qpoints

def gpa(self):
return self.qpoints/self.hours

 For example, to print a student’s name you could
write:
print aStudent.getName()

Python Programming, 3/e 61

Data Processing with Class
 How can we use these tools to find the

student with the best GPA?
 We can use an algorithm similar to

finding the max of n numbers! We
could look through the list one by one,
keeping track of the best student seen
so far!

Python Programming, 3/e 62

Data Processing with Class
Get the file name from the user

Open the file for reading

Set best to be the first student

For each student s in the file

if s.gpa() > best.gpa

set best to s

Print out information about best

Python Programming, 3/e 63

Data Processing with Class
gpa.py
Program to find student with highest GPA

class Student:

def __init__(self, name, hours, qpoints):
self.name = name
self.hours = float(hours)
self.qpoints = float(qpoints)

def getName(self):
return self.name

def getHours(self):
return self.hours

def getQPoints(self):
return self.qpoints

def gpa(self):
return self.qpoints/self.hours

def makeStudent(infoStr):
name, hours, qpoints = infoStr.split("\t")
return Student(name, hours, qpoints)

def main():
filename = input("Enter name the grade
file: ")
infile = open(filename, 'r')
best = makeStudent(infile.readline())
for line in infile:

s = makeStudent(line)
if s.gpa() > best.gpa():

best = s
infile.close()
print("The best student is:",
best.getName())
print ("hours:", best.getHours())
print("GPA:", best.gpa())

if __name__ == '__main__':
main()

Python Programming, 3/e 64

Encapsulating Useful Abstractions
 Defining new classes (like Projectile

and Student) can be a good way to
modularize a program.

 Once some useful objects are identified,
the implementation details of the
algorithm can be moved into a suitable
class definition.

Python Programming, 3/e 65

Encapsulating Useful Abstractions
 The main program only has to worry about

what objects can do, not about how they are
implemented.

 In computer science, this separation of
concerns is known as encapsulation.

 The implementation details of an object are
encapsulated in the class definition, which
insulates the rest of the program from having
to deal with them.

Python Programming, 3/e 66

Encapsulating Useful Abstractions
 One of the main reasons to use objects

is to hide the internal complexities of
the objects from the programs that use
them.

 From outside the class, all interaction
with an object can be done using the
interface provided by its methods.

Python Programming, 3/e 67

Encapsulating Useful Abstractions
 One advantage of this approach is that

it allows us to update and improve
classes independently without worrying
about “breaking” other parts of the
program, provided that the interface
provided by the methods does not
change.

Python Programming, 3/e 68

Putting Classes in Modules
 Sometimes we may program a class that

could be useful in many other programs.
 If you might be reusing the code again,

put it into its own module file with
documentation to describe how the class
can be used so that you won’t have to try
to figure it out in the future from looking
at the code!

Python Programming, 3/e 69

Module Documentation
 You are already familiar with “#” to

indicate comments explaining what’s
going on in a Python file.

 Python also has a special kind of
commenting convention called the
docstring. You can insert a plain string
literal as the first line of a module, class,
or function to document that component.

Python Programming, 3/e 70

Module Documentation
 Why use a docstring?

 Ordinary comments are ignored by Python
 Docstrings are accessible in a special attribute

called __doc__.
 Most Python library modules have extensive

docstrings. For example, if you can’t
remember how to use random:
>>> import random
>>> print random.random.__doc__
random() -> x in the interval [0, 1).

Python Programming, 3/e 71

Module Documentation
 Docstrings are also used by the Python online

help system and by a utility called PyDoc that
automatically builds documentation for
Python modules. You could get the same
information like this:
>>> import random
>>> help(random.random)
Help on built-in function random:

random(...)
random() -> x in the interval [0, 1).

Python Programming, 3/e 72

Module Documentation
 To see the documentation for an entire

module, try typing help(module_name)!
 """ is a third way that Python allows

string literals to be delimited, allowing
us to type multi-line strings.

 The following code for the projectile
class has docstrings.

Python Programming, 3/e 73

Module Documentation
projectile.py

"""projectile.py
Provides a simple class for modeling the flight of projectiles."""

from math import pi, sin, cos

class Projectile:

"""Simulates the flight of simple projectiles near the earth's
surface, ignoring wind resistance. Tracking is done in two
dimensions, height (y) and distance (x)."""

def __init__(self, angle, velocity, height):
"""Create a projectile with given launch angle, initial
velocity and height."""
self.xpos = 0.0
self.ypos = height
theta = pi * angle / 180.0
self.xvel = velocity * cos(theta)
self.yvel = velocity * sin(theta)

Python Programming, 3/e 74

Module Documentation
def update(self, time):

"""Update the state of this projectile to move it time seconds
farther into its flight"""
self.xpos = self.xpos + time * self.xvel
yvel1 = self.yvel - 9.8 * time
self.ypos = self.ypos + time * (self.yvel + yvel1) / 2.0
self.yvel = yvel1

def getY(self):
"Returns the y position (height) of this projectile."
return self.ypos

def getX(self):
"Returns the x position (distance) of this projectile."
return self.xpos

Python Programming, 3/e 75

Working with Multiple Modules
 Our main program can import from the projectile module in

order to solve the original problem!
cball4.py
Simulation of the flight of a cannon ball (or other projectile)
This version uses a separate projectile module file

from projectile import Projectile

def getInputs():
a = float(input("Enter the launch angle (in degrees): "))
v = float(input("Enter the initial velocity (in meters/sec): "))
h = float(input("Enter the initial height (in meters): "))
t = float(input("Enter the time interval between position calculations: "))
return a,v,h,t

def main():
angle, vel, h0, time = getInputs()
cball = Projectile(angle, vel, h0)
while cball.getY() >= 0:

cball.update(time)
print("\nDistance traveled: {0:0.1f} meters.".format(cball.getX())

Python Programming, 3/e 76

Working with Multiple Modules
 If you are interactively testing a multi-module

Python program, you need to be aware that
reloading a module may not behave as you
expect.

 When Python first imports a given module, it
creates a module object that contains all the
things defined in the module (a namespace). If a
module imports successfully (no syntax errors),
subsequent imports do not reload the module.
Even if the source code for the module has been
changed, re-importing it into an interactive
session will not load the updated version.

Python Programming, 3/e 77

Working with Multiple Modules
 The easiest way – start a new interactive

session for testing whenever any of the
modules involved in your testing are
modified. This way you’re guaranteed to get
a more recent import of all the modules
you’re using.

 If you’re using IDLE, you’ll notice it does this
for you by doing a shell restart when you
select “run module.”

Python Programming, 3/e 78

Widgets
 One very common use of objects is in the

design of graphical user interfaces (GUIs).
 Back in chapter four we talked about GUIs

being composed of visual interface objects
known as widgets.

 The Entry object defined in our
graphics library is one example of a
widget.

Python Programming, 3/e 79

Example Program: Dice Roller
 Let’s build a couple useful widgets!
 Consider a program that rolls a pair of

six-sided dice.
 The program will display the dice

graphically and provide two buttons,
one for rolling the dice and one for
quitting the program.

Python Programming, 3/e 80

Example Program: Dice Roller
 There are two kinds

of widgets: buttons
and dice.

 The two buttons will
be examples of the
Button class, while
the dice images will
be provided by
dieView.

Python Programming, 3/e 81

Building Buttons
 Most modern GUIs have buttons with 3-

dimensional look and feel. Our simple
graphics package does not have the
machinery to produce buttons that
appear to depress as they are clicked.

 All we can do is report back where the
mouse was clicked after the click has
been completed.

Python Programming, 3/e 82

Building Buttons
 Our buttons will be rectangular regions in

a graphics window where user clicks can
influence the behavior of the running
application.

 We need a way to determine whether a
button has been clicked.

 It would be nice to be able to activate and
deactivate (gray-out) individual buttons.

Python Programming, 3/e 83

Building Buttons
 Constructor – Create a button in a

window. We will specify the window in
which the button will be displayed, the
location/size of the button, and the
label on the button.

 Activate – Set the state of the button
to active.

 Deactivate – Set the state of the
button to inactive.

Python Programming, 3/e 84

Building Buttons
 Clicked– Indicate if the button was

clicked. If the button is active, this method
will determine if the point clicked is inside
the button region. The point will have to
be sent as a parameter to the method.

 getLabel– Returns the label string of a
button. This is provided so that we can
identify a particular button.

Python Programming, 3/e 85

Building Buttons
 To support these operations, our

buttons will need a number of instance
variables.

 For example, buttons are drawn as a
rectangle with some text centered on it.
Invoking the activate and
deactivate methods will change the
appearance of the buttons.

Python Programming, 3/e 86

Building Buttons
 Saving the Rectangle and Text

objects as instance variables means we
will be able to control the width of the
outline and color of the label.

 Let’s try writing these methods and
build up a list of possible instance
variables! Once we have the list, we can
write the constructor to initialize them.

Python Programming, 3/e 87

Building Buttons
 In activate, we can signal a button is active by

making its outline thicker and making the label text
black.

def activate(self):
"Sets this button to 'active'. "
self.label.setFill('black')
self.rect.setWidth(2)
self.active = True

 Remember, self refers to the button object.
 Our constructor will have to initialize self.label as

an appropriate Text object and self.rect as a
rectangle object.

 self.active also has a Boolean instance variable
to remember whether or not the button is currently
inactive.

Python Programming, 3/e 88

Building Buttons
 The code for deactivate is very

similar:
def deactivate(self):

"Sets this button to 'inactive'."
self.label.setFill('darkgrey')
self.rect.setWidth(1)
self.active = 0

Python Programming, 3/e 89

Building Buttons
 Let’s work on the clicked method.
 The graphics package has the
getMouse method to see if and where
the mouse has been clicked.

 If an application needs to get a button
click, it will have to first call getMouse
and then see which button, if any, the
point is inside of.

Python Programming, 3/e 90

Building Buttons
pt = win.getMouse()
if button1.clicked(pt):

Do button1 stuff
elif button2.clicked(pt):

Do button2 stuff
elif button3.clicked(pt):

Do button3 stuff
…

 The main job of the clicked method
is to determine whether a given point is
inside the rectangular button.

Python Programming, 3/e 91

Building Buttons
 The point is inside the button if its x

and y coordinates lie between the
extreme x and y values of the
rectangle.

 This would be easiest if the button
object had the min and max values of x
and y as instance variables.

Python Programming, 3/e 92

Building Buttons
 def clicked(self, p):

"RETURNS true if button active and p is inside"
return self.active and \

self.xmin <= p.getX() <= self.xmax and \
self.ymin <= p.getY() <= self.ymax

 For this function to return True, all three
parts of the Boolean expression must be true.

 The first part ensures that only active buttons
will return that they have been clicked.

 The second and third parts ensure that the x
and y values of the point that was clicked fall
between the boundaries of the rectangle.

Python Programming, 3/e 93

Building Buttons
 The only part that is left is to write the constructor:
def __init__(self, win, center, width, height, label):

""" Creates a rectangular button, eg:
qb = Button(myWin, Point(30,25), 20, 10, 'Quit') """

w,h = width/2.0, height/2.0
x,y = center.getX(), center.getY()
self.xmax, self.xmin = x+w, x-w
self.ymax, self.ymin = y+h, y-h
p1 = Point(self.xmin, self.ymin)
p2 = Point(self.xmax, self.ymax)
self.rect = Rectangle(p1,p2)
self.rect.setFill('lightgray')
self.rect.draw(win)
self.label = Text(center, label)
self.label.draw(win)
self.deactivate()

 Buttons are positioned by providing a center
point width and height

Python Programming, 3/e 94

Building Buttons
 Buttons are positioned by providing a center

point, width, and height.

Python Programming, 3/e 95

Building Dice
 The purpose of the DieView class is to

graphically display the value of a die.
 The face of the die is a

square/rectangle, and the pips/spots on
the die are circles.

 As before, the DieView class will have
a constructor and a method.

Python Programming, 3/e 96

Building Dice
 constructor – Create a die in a

window. We will specify the window,
the center point of the die, and the size
of the die as parameters.

 setValue – Change the view to show a
given value. The value to display will be
passed as a parameter.

Python Programming, 3/e 97

Building Dice
 Clearly, the hardest part of this will be

to turn on the pips on the die to
represent the current value of the die.

 One approach is to pre-place the pips,
and make them the same color as the
die. When the spot is turned on, it will
be redrawn with a darker color.

Python Programming, 3/e 98

Building Dice
 A standard die will need seven pips -- a

column of three on the left and right
sides, and one in the center.

 The constructor will create the
background square and the seven
circles. setValue will set the colors of
the circles based on the value of the
die.

Python Programming, 3/e 99

Building Dice
dieview.py
A widget for displaying the value of a die

from graphics import *

class DieView:
""" DieView is a widget that displays a graphical representation
of a standard six-sided die."""

def __init__(self, win, center, size):
"""Create a view of a die, e.g.:

d1 = GDie(myWin, Point(40,50), 20)
creates a die centered at (40,50) having sides
of length 20."""

first defind some standard values
self.win = win
self.background = "white" # color of die face
self.foreground = "black" # color of the pips
self.psize = 0.1 * size # radius of each pip
hsize = size / 2.0 # half of size
offset = 0.6 * hsize # distance from center to outer pip

Python Programming, 3/e 100

Building Dice
create a square for the face
cx, cy = center.getX(), center.getY()
p1 = Point(cx-hsize, cy-hsize)
p2 = Point(cx+hsize, cy+hsize)
rect = Rectangle(p1,p2)
rect.draw(win)
rect.setFill(self.background)

Create 7 circles for standard pip locations
self.pip1 = self.__makePip(cx-offset, cy-offset)
self.pip2 = self.__makePip(cx-offset, cy)
self.pip3 = self.__makePip(cx-offset, cy+offset)
self.pip4 = self.__makePip(cx, cy)
self.pip5 = self.__makePip(cx+offset, cy-offset)
self.pip6 = self.__makePip(cx+offset, cy)
self.pip7 = self.__makePip(cx+offset, cy+offset)

self.setValue(1)

Python Programming, 3/e 101

Building Dice
def __makePip(self, x, y):

"""Internal helper method to draw a pip at (x,y)"""
pip = Circle(Point(x,y), self.psize)
pip.setFill(self.background)
pip.setOutline(self.background)
pip.draw(self.win)
return pip

def setValue(self, value):
""" Set this die to display value."""
turn all pips off
self.pip1.setFill(self.background)
self.pip2.setFill(self.background)
self.pip3.setFill(self.background)
self.pip4.setFill(self.background)
self.pip5.setFill(self.background)
self.pip6.setFill(self.background)
self.pip7.setFill(self.background)

Building Dice
turn correct pips on
if value == 1:

self.pip4.setFill(self.foreground)
elif value == 2:

self.pip1.setFill(self.foreground)
self.pip7.setFill(self.foreground)

elif value == 3:
self.pip1.setFill(self.foreground)
self.pip7.setFill(self.foreground)
self.pip4.setFill(self.foreground)

elif value == 4:
self.pip1.setFill(self.foreground)
self.pip3.setFill(self.foreground)
self.pip5.setFill(self.foreground)
self.pip7.setFill(self.foreground)

elif value == 5:
self.pip1.setFill(self.foreground)
self.pip3.setFill(self.foreground)
self.pip4.setFill(self.foreground)
self.pip5.setFill(self.foreground)
self.pip7.setFill(self.foreground)

else:
self.pip1.setFill(self.foreground)
self.pip2.setFill(self.foreground)
self.pip3.setFill(self.foreground)
self.pip5.setFill(self.foreground)
self.pip6.setFill(self.foreground)
self.pip7.setFill(self.foreground)

Python Programming, 3/e 102

Python Programming, 3/e 103

Building Dice
 Things to notice:

 The size of the spots being 1/10 of the size of the
die was determined by trial and error.

 We define and calculate various attributes of the
die in the constructor and then use them in other
methods and functions within the class so that if
we wanted to change the appearance, all those
values and the code to go with them is in one
place, rather than throughout the class.

Python Programming, 3/e 104

Building Dice
 __makePip is a helper function to draw

each of the seven pips on the die. Since it
is only useful within DieView, it’s
appropriate to make it a class method. It’s
name starts with __ to indicate that its use
is “private” to the class and is not intended
to be used outside the class.

Python Programming, 3/e 105

The Main Program
roller.py
Graphics program to roll a pair of dice. Uses custom widgets
Button and GDie.

from random import randrange
from graphics import GraphWin, Point

from button import Button
from dieview import DieView

def main():

create the application window
win = GraphWin("Dice Roller")
win.setCoords(0, 0, 10, 10)
win.setBackground("green2")

Python Programming, 3/e 106

The Main Program
Draw the interface widgets
die1 = DieView(win, Point(3,7), 2)
die2 = DieView(win, Point(7,7), 2)
rollButton = Button(win, Point(5,4.5), 6, 1, "Roll Dice")
rollButton.activate()
quitButton = Button(win, Point(5,1), 2, 1, "Quit")

Event loop
pt = win.getMouse()
while not quitButton.clicked(pt):

if rollButton.clicked(pt):
value1 = randrange(1,7)
die1.setValue(value1)
value2 = randrange(1,7)
die2.setValue(value2)
quitButton.activate()

pt = win.getMouse()

close up shop
win.close()

Python Programming, 3/e 107

The Main Program
 The visual interface is built by creating

the two DieViews and two Buttons.
 The roll button is initially active, but the

quit button is deactivated. This forces
the user to roll the dice at least once.

 The event loop is a sentinel loop that
gets mouse clicks and processes them
until the user clicks on the quit button.

Python Programming, 3/e 108

The Main Program
 The if within the loop ensures that the

dice are rolled only when the user clicks
the roll button.

 Clicking a point that is not inside any
button causes the loop to iterate
without doing anything.

Python Programming, 3/e 109

Animated Cannon Ball
 Let’s add a nicer interface to the

cannon ball program.

Python Programming, 3/e 110

Drawing the
Animation Window

def main():

create animation window

win = GraphWin("Projectile Animation", 640, 480, autoflush = False)

win.setCoords(-10, -10, 210, 155)

draw baseline

Line(Point(-10, 0), Point(210, 0)).draw(win)

draw labeled ticks every 50 meters

for x in range(0, 210, 50):

Text(Point(x, -5), str(x)).draw(win)

Line(Point(x, 0), Point(x, 2)).draw(win)

Python Programming, 3/e 111

Drawing the
Animation Window

 Did you notice the autoflush=False?
 The default behavior is for a graphics object

to immediately update its appearance
whenever it’s asked to change, i.e. changing
its color.

 By setting autoflush to False, we’re
telling the graphics library its OK to allow
commands to build up in the pipeline before
performing them.

Python Programming, 3/e 112

Drawing the
Animation Window

 Why would we want the graphics
commands to not occur immediately?
 Graphics commands are relatively time

consuming because they require communication
with the underlying operating system to
exchange information with the display hardware.

 Rather than stopping the program many times to
carry out a sequence of small graphics
commands, they can be carried out together
with just a single program interruption.

Python Programming, 3/e 113

Drawing the
Animation Window
 Another reason is that during animations, there

may be many changes occurring on the screen
that we need to synchronize. With autoflush
off, we can make numerous changes that will all
show up simultaneously when the update
function is called.

 You will almost always want autoflush off for
animations.

Python Programming, 3/e 114

Creating a ShotTracker
 The next thing need is a graphical object

that acts like a cannon ball.
 We can use our Projectile class to model the

flight of the cannon ball, but Projectile is not a
graphics object!

 We could use a Circle, but it doesn’t know
about projectile flight.

 What we really need is something that has
properties of both – let’s create a ShotTracker
that contains both a Projectile and a Circle.

Python Programming, 3/e 115

Creating a ShotTracker
class ShotTracker:

""" Graphical depiction of a projectile flight using a Circle """

def __init__(self, win, angle, velocity, height):

"""win is the GraphWin to display the shot, angle, velocity, and

height are initial projectile parameters.

"""

self.proj = Projectile(angle, velocity, height)

self.marker = Circle(Point(0,height), 3)

self.marker.setFill("red")

self.marker.setOutline("red")

self.marker.draw(win)

Python Programming, 3/e 116

Creating a ShotTracker
 Did you notice how the parameters have all

the information we need to create both a
Projectile and a Circle (self.proj and
self.marker)?

 We need to ensure that whenever an
update occurs, both the projectile and
position of the circle are updated.
 The projectile has an update method
 For the marker, calculate how far it must move

in the x and y directions.

Python Programming, 3/e 117

Creating a ShotTracker
def update(self, dt):

""" Move the shot dt seconds farther along its flight """

self.proj.update(dt)

center = self.marker.getCenter()

dx = self.proj.getX() - center.getX()

dy = self.proj.getY() - center.getY()

self.marker.move(dx,dy)

Python Programming, 3/e 118

Creating a ShotTracker
def getX(self):

""" return the current x coordinate of the shot's center """

return self.proj.getX()

def getY(self):

""" return the current y coordinate of the shot's center """

return self.proj.getY()

def destroy(self):

""" undraw the shot """

self.marker.undraw()

Python Programming, 3/e 119

Creating an Input Dialog
 Before we can out a cannon ball in flight,

we’ll need to get the projectile parameters
angle, velocity, and initial height from the
user.

 A common way of getting user input in a
GUI is to use a dialog box.

 A dialog box is a sort of mini GUI that
serves as an independent component of a
larger program.

Python Programming, 3/e 120

Creating an Input Dialog
 The user can change the input values and

select either “Fire!” to launch the cannon
ball or “Quit” to exit the program.

 It’s useful to think of this dialog as just
another object the main program can
manipulate.

 It will have operations to create the dialog,
allow a user to interact with it, and extract
the user inputs.

Python Programming, 3/e 121

Creating an Input Dialog
 We can create the window itself and draw its

contents in the constructor.
class InputDialog:

""" A custom window for getting simulation values (angle, velocity,

and height from the user."""

def __init__(self, angle, vel, height):

""" Build and display the input window """

self.win = win = GraphWin("Initial Values", 200, 300)

win.setCoords(0, 4.5, 4, .5)

Text(Point(1,1), "Angle").draw(win)

self.angle = Entry(Point(3,1), 5).draw(win)

self.angle.setText(str(angle))

Python Programming, 3/e 122

Creating an Input Dialog
Text(Point(1,2), "Velocity").draw(win)

self.vel = Entry(Point(3,2), 5).draw(win)

self.vel.setText(str(vel))

Text(Point(1,3), "Height").draw(win)

self.height = Entry(Point(3,3), 5).draw(win)

self.height.setText(str(height))

self.fire = Button(win, Point(1,4), 1.25, .5, "Fire!")

self.fire.activate()

self.quit = Button(win, Point(3,4), 1.25, .5, "Quit")

self.quit.activate()

Python Programming, 3/e 123

Creating an Input Dialog
 The constructor accepts parameters that

provide default values for the three inputs.
That allows the program to seed the dialog
with useful inputs as a prompt to the user.

 When it’s time for the user to interact with
the dialog, we need to make it go modal
with its own event loop that waits for mouse
clicks and does not exit until one of the
buttons has been pressed.

Python Programming, 3/e 124

Creating an Input Dialog
def interact(self):

""" wait for user to click Quit or Fire button

Returns a string indicating which button was clicked

"""

while True:

pt = self.win.getMouse()

if self.quit.clicked(pt):

return "Quit"

if self.fire.clicked(pt):

return "Fire!"

 The return value from the method is used to
indicate which button was clicked to end the
interaction.

Python Programming, 3/e 125

Creating an Input Dialog
def getValues(self):

""" return input values """

a = float(self.angle.getText())

v = float(self.vel.getText())

h = float(self.height.getText())

return a, v, h

 Things to note:
 For simplicity, all three inputs are retrieved in a

single method call.
 The strings from the entries are converted to

floating point values.

Python Programming, 3/e 126

Creating an Input Dialog
def close(self):

""" close the input window """

self.win.close()

 This this class, getting values from the user will
require just a few lines of code:

dialog = InputDialog(45, 40, 2)

choice = dialog.interact()

if choice == "Fire!" :
angle, vel, height = dialog.getValues()

 This has the flexibility of either popping up a new
dialog each time input is required, or to keep a
single dialog open and interact with it multiple
times.

Python Programming, 3/e 127

The Main Event Loop
file: animation.py

def main():

create animation window

win = GraphWin("Projectile Animation", 640, 480, autoflush = False)

win.setCoords(-10, -10, 210, 155)

draw baseline

Line(Point(-10, 0), Point(210, 0)).draw(win)

draw labeled ticks every 50 meters

for x in range(0, 210, 50):

Text(Point(x, -5), str(x)).draw(win)

Line(Point(x, 0), Point(x, 2)).draw(win)

Python Programming, 3/e 128

The Main Event Loop
event loop, each time through fires a single shot

angle, vel, height = 45.0, 40.0, 2.0

while True:

interact with the user

inputwin = InputDialog(angle, vel, height)

choice = inputwin.interact()

inputwin.close()

if choice == "Quit": # loop exit

break

create a shot and track until it hits ground or leaves window

angle, vel, height = inputWin.getValues()

shot = ShotTracker(win, angle, vel, height)

while 0 <= shot.getY() and -10 < shot.getX() <= 210:

shot.update(1/50)

update(50)

win.close()

Python Programming, 3/e 129

The Main Event Loop
 Each pass through the event loop fires one cannon

shot.
while 0 <= shot.getY() and -10 < shot.getX() <= 210:

shot.update(1/50)

update(50)

 This while loop keeps updating the shot
until it hits the ground or leaves the window
horizontally.

 Each time through, the position is updated
to move it 1/50th of a second.

Python Programming, 3/e 130

The Main Event Loop
 Since autoflush is False, changes won’t appear in

the window until the update(50) executes.
 The parameter to update specifies the rate at which

updates are allowed – 50 here means the loop will
spin around 50 times per second, establishing the
effective frame rate for our simulation.

 The 1/50th per second shot update combined with
50 updates per second gives us a real time
simulation, i.e. our simulated cannon ball will stay
in flight for the same clock time as the
corresponding real cannon ball.

Python Programming, 3/e 131

The Main Event Loop
 The big lesson: using separate classes to

encapsulate functionality like tracking shots and
interacting with the user makes the main program
much simpler.

 One shortcoming of our approach is that we can
only model the flight of one object at a time. This
wouldn’t be a suitable design for something like a
video game where multiple objects would be in
motion.

	Python Programming:�An Introduction To�Computer Science
	Objectives
	Objectives
	Quick Review of Objects
	Quick Review of Objects
	Quick Review of Objects
	Quick Review of Objects
	Quick Review of Objects
	Quick Review of Objects
	Quick Review of Objects
	Quick Review of Objects
	Cannonball Program Specification
	Cannonball Program Specification
	Cannonball Program Specification
	Cannonball Program Specification
	Designing the Program
	Designing the Program
	Designing the Program
	Designing the Program
	Designing the Program
	Designing the Program
	Designing the Program
	Designing the Program
	Designing the Program
	Designing the Programs
	Designing Programs
	Modularizing the Program
	Modularizing the Program
	Modularizing the Program
	Modularizing the Program
	Modularizing the Program
	Modularizing the Program
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: Multi-Sided Dice
	Example: The Projectile Class
	Example: The Projectile Class
	Example: The Projectile Class
	Example: The Projectile Class
	Example: The Projectile Class
	Data Processing with Class
	Data Processing with Class
	Data Processing with Class
	Data Processing with Class
	Data Processing with Class
	Data Processing with Class
	Data Processing with Class
	Data Processing with Class
	Data Processing with Class
	Data Processing with Class
	Encapsulating Useful Abstractions
	Encapsulating Useful Abstractions
	Encapsulating Useful Abstractions
	Encapsulating Useful Abstractions
	Putting Classes in Modules
	Module Documentation
	Module Documentation
	Module Documentation
	Module Documentation
	Module Documentation
	Module Documentation
	Working with Multiple Modules
	Working with Multiple Modules
	Working with Multiple Modules
	Widgets
	Example Program: Dice Roller
	Example Program: Dice Roller
	Building Buttons
	Building Buttons
	Building Buttons
	Building Buttons
	Building Buttons
	Building Buttons
	Building Buttons
	Building Buttons
	Building Buttons
	Building Buttons
	Building Buttons
	Building Buttons
	Building Buttons
	Building Buttons
	Building Dice
	Building Dice
	Building Dice
	Building Dice
	Building Dice
	Building Dice
	Building Dice
	Building Dice
	Building Dice
	Building Dice
	The Main Program
	The Main Program
	The Main Program
	The Main Program
	Animated Cannon Ball
	Drawing the�Animation Window
	Drawing the�Animation Window
	Drawing the�Animation Window
	Drawing the�Animation Window
	Creating a ShotTracker
	Creating a ShotTracker
	Creating a ShotTracker
	Creating a ShotTracker
	Creating a ShotTracker
	Creating an Input Dialog
	Creating an Input Dialog
	Creating an Input Dialog
	Creating an Input Dialog
	Creating an Input Dialog
	Creating an Input Dialog
	Creating an Input Dialog
	Creating an Input Dialog
	The Main Event Loop
	The Main Event Loop
	The Main Event Loop
	The Main Event Loop
	The Main Event Loop

