
Python Programming, 3/e 1

Python Programming:
An Introduction
To Computer Science

Chapter 8
Loop Structures and Booleans

Python Programming, 3/e 2

Objectives
 To understand the concepts of definite

and indefinite loops as they are realized
in the Python for and while
statements.

 To understand the programming
patterns interactive loop and sentinel
loop and their implementations using a
Python while statement.

Python Programming, 3/e 3

Objectives
 To understand the programming

pattern end-of-file loop and ways of
implementing such loops in Python.

 To be able to design and implement
solutions to problems involving loop
patterns including nested loop
structures.

Python Programming, 3/e 4

Objectives
 To understand the basic ideas of

Boolean algebra and be able to analyze
and write Boolean expressions involving
Boolean operators.

Python Programming, 3/e 5

For Loops: A Quick Review
 The for statement allows us to iterate

through a sequence of values.
 for <var> in <sequence>:

<body>
 The loop index variable var takes on

each successive value in the sequence,
and the statements in the body of the
loop are executed once for each value.

Python Programming, 3/e 6

For Loops: A Quick Review
 Suppose we want to write a program that can

compute the average of a series of numbers
entered by the user.

 To make the program general, it should work
with any size set of numbers.

 We don’t need to keep track of each number
entered, we only need know the running sum
and how many numbers have been added.

Python Programming, 3/e 7

For Loops: A Quick Review
 We’ve run into some of these things

before!
 A series of numbers could be handled by

some sort of loop. If there are n numbers,
the loop should execute n times.

 We need a running sum. This will use an
accumulator.

Python Programming, 3/e 8

For Loops: A Quick Review
Input the count of the numbers, n

Initialize sum to 0

Loop n times

Input a number, x

Add x to sum

Output average as sum/n

Python Programming, 3/e 9

For Loops: A Quick Review
average1.py

A program to average a set of numbers

Illustrates counted loop with accumulator

def main():

n = int(input("How many numbers do you have? "))

sum = 0.0

for i in range(n):

x = float(input("Enter a number >> "))

sum = sum + x

print("\nThe average of the numbers is", sum / n)

Python Programming, 3/e 10

For Loops: A Quick Review
How many numbers do you have? 5

Enter a number >> 32

Enter a number >> 45

Enter a number >> 34

Enter a number >> 76

Enter a number >> 45

The average of the numbers is 46.4

Python Programming, 3/e 11

Indefinite Loops
 That last program got the job done, but you

need to know ahead of time how many
numbers you’ll be dealing with.

 What we need is a way for the computer to
take care of counting how many numbers
there are.

 The for loop is a definite loop, meaning that
the number of iterations is determined when
the loop starts.

Python Programming, 3/e 12

Indefinite Loops
 We can’t use a definite loop unless we

know the number of iterations ahead of
time. We can’t know how many
iterations we need until all the numbers
have been entered.

 We need another tool!
 The indefinite or conditional loop keeps

iterating until certain conditions are
met.

Python Programming, 3/e 13

Indefinite Loops
 while <condition>:

<body>

 condition is a Boolean expression, just like
in if statements. The body is a sequence of
one or more statements.

 Semantically, the body of the loop executes
repeatedly as long as the condition remains
true. When the condition is false, the loop
terminates.

Indefinite Loops
 The condition is

tested at the top of
the loop. This is
known as a pre-test
loop. If the condition
is initially false, the
loop body will not
execute at all.

Python Programming, 3/e 14

Python Programming, 3/e 15

Indefinite Loop
 Here’s an example of a while loop

that counts from 0 to 10:
i = 0
while i <= 10:

print(i)
i = i + 1

 The code has the same output as this
for loop:
for i in range(11):

print(i)

Python Programming, 3/e 16

Indefinite Loop
 The while loop requires us to manage

the loop variable i by initializing it to 0
before the loop and incrementing it at
the bottom of the body.

 In the for loop this is handled
automatically.

Python Programming, 3/e 17

Indefinite Loop
 The while statement is simple, but yet

powerful and dangerous – they are a
common source of program errors.

 i = 0
while i <= 10:

print(i)

 What happens with this code?

Python Programming, 3/e 18

Indefinite Loop
 When Python gets to this loop, i is

equal to 0, which is less than 10, so the
body of the loop is executed, printing 0.
Now control returns to the condition,
and since i is still 0, the loop repeats,
etc.

 This is an example of an infinite loop.

Python Programming, 3/e 19

Indefinite Loop
 What should you do if you’re caught in

an infinite loop?
 First, try pressing control-c
 If that doesn’t work, try control-alt-delete
 If that doesn’t work, push the reset

button!

Python Programming, 3/e 20

Interactive Loops
 One good use of the indefinite loop is to write

interactive loops. Interactive loops allow a
user to repeat certain portions of a program
on demand.

 Remember how we said we needed a way for
the computer to keep track of how many
numbers had been entered? Let’s use
another accumulator, called count.

Python Programming, 3/e 21

Interactive Loops
 At each iteration of the loop, ask the user if

there is more data to process. We need to
preset it to “yes” to go through the loop the
first time.

 set moredata to “yes”
while moredata is “yes”

get the next data item
process the item
ask user if there is moredata

Python Programming, 3/e 22

Interactive Loops
 Combining the interactive loop pattern with

accumulators for sum and count:
 initialize sum to 0.0
initialize count to 0
set moredata to “yes”
while moredata is “yes”

input a number, x
add x to sum
add 1 to count
ask user if there is moredata

output sum/count

Python Programming, 3/e 23

Interactive Loops
average2.py
A program to average a set of numbers
Illustrates interactive loop with two accumulators

def main():
sum = 0.0
count = 0
moredata = "yes"
while moredata[0] == "y":

x = float(input("Enter a number >> "))
sum = sum + x
count = count + 1
moredata = input("Do you have more numbers (yes or no)? ")

print("\nThe average of the numbers is", sum / count)

 Using string indexing (moredata[0]) allows us to accept “y”,
“yes”, “yeah” to continue the loop

Python Programming, 3/e 24

Interactive Loops
Enter a number >> 32
Do you have more numbers (yes or no)? y
Enter a number >> 45
Do you have more numbers (yes or no)? yes
Enter a number >> 34
Do you have more numbers (yes or no)? yup
Enter a number >> 76
Do you have more numbers (yes or no)? y
Enter a number >> 45
Do you have more numbers (yes or no)? nah

The average of the numbers is 46.4

Python Programming, 3/e 25

Sentinel Loops
 A sentinel loop continues to process

data until reaching a special value that
signals the end.

 This special value is called the sentinel.
 The sentinel must be distinguishable

from the data since it is not processed
as part of the data.

Python Programming, 3/e 26

Sentinel Loops
 get the first data item
while item is not the sentinel

process the item
get the next data item

 The first item is retrieved before the loop
starts. This is sometimes called the priming
read, since it gets the process started.

 If the first item is the sentinel, the loop
terminates and no data is processed.

 Otherwise, the item is processed and the next
one is read.

Python Programming, 3/e 27

Sentinel Loops
 In our averaging example, assume we

are averaging test scores.
 We can assume that there will be no

score below 0, so a negative number
will be the sentinel.

Python Programming, 3/e 28

Sentinel Loops
average3.py

A program to average a set of numbers

Illustrates sentinel loop using negative input as sentinel

def main():

sum = 0.0

count = 0

x = float(input("Enter a number (negative to quit) >> "))

while x >= 0:

sum = sum + x

count = count + 1

x = float(input("Enter a number (negative to quit) >> "))

print("\nThe average of the numbers is", sum / count)

Python Programming, 3/e 29

Sentinel Loops
Enter a number (negative to quit) >> 32

Enter a number (negative to quit) >> 45

Enter a number (negative to quit) >> 34

Enter a number (negative to quit) >> 76

Enter a number (negative to quit) >> 45

Enter a number (negative to quit) >> -1

The average of the numbers is 46.4

Python Programming, 3/e 30

Sentinel Loops
 This version provides the ease of use of

the interactive loop without the hassle
of typing ‘y’ all the time.

 There’s still a shortcoming – using this
method we can’t average a set of
positive and negative numbers.

 If we do this, our sentinel can no longer
be a number.

Python Programming, 3/e 31

Sentinel Loops
 We could input all the information as

strings.
 Valid input would be converted into

numeric form. Use a character-based
sentinel.

 We could use the empty string (“”)!

Python Programming, 3/e 32

Sentinel Loops
initialize sum to 0.0

initialize count to 0

input data item as a string, xStr

while xStr is not empty

convert xStr to a number, x

add x to sum

add 1 to count

input next data item as a string, xStr

Output sum / count

Python Programming, 3/e 33

Sentinel Loops
average4.py

A program to average a set of numbers

Illustrates sentinel loop using empty string as sentinel

def main():

sum = 0.0

count = 0

xStr = input("Enter a number (<Enter> to quit) >> ")

while xStr != "":

x = float(xStr)

sum = sum + x

count = count + 1

xStr = input("Enter a number (<Enter> to quit) >> ")

print("\nThe average of the numbers is", sum / count)

Python Programming, 3/e 34

Sentinel Loops
Enter a number (<Enter> to quit) >> 34

Enter a number (<Enter> to quit) >> 23

Enter a number (<Enter> to quit) >> 0

Enter a number (<Enter> to quit) >> -25

Enter a number (<Enter> to quit) >> -34.4

Enter a number (<Enter> to quit) >> 22.7

Enter a number (<Enter> to quit) >>

The average of the numbers is 3.38333333333

Python Programming, 3/e 35

File Loops
 The biggest disadvantage of our

program at this point is that they are
interactive.

 What happens if you make a typo on
number 43 out of 50?

 A better solution for large data sets is
to read the data from a file.

Python Programming, 3/e 36

File Loops
average5.py

Computes the average of numbers listed in a file.

def main():

fileName = input("What file are the numbers in? ")

infile = open(fileName,'r')

sum = 0.0

count = 0

for line in infile:

sum = sum + float(line)

count = count + 1

print("\nThe average of the numbers is", sum / count)

Python Programming, 3/e 37

File Loops
 Many languages don’t have a

mechanism for looping through a file
like this. Rather, they use a sentinel!

 We could use readline in a loop to
get the next line of the file.

 At the end of the file, readline
returns an empty string, “”

Python Programming, 3/e 38

File Loops
 line = infile.readline()
while line != ""

#process line
line = infile.readline()

 Does this code correctly handle the
case where there’s a blank line in the
file?

 Yes. An empty line actually ends with
the newline character, and readline
includes the newline. “\n” != “”

Python Programming, 3/e 39

File Loops
average6.py
Computes the average of numbers listed in a file.

def main():
fileName = input("What file are the numbers in? ")
infile = open(fileName,'r')
sum = 0.0
count = 0
line = infile.readline()
while line != "":

sum = sum + float(line)
count = count + 1
line = infile.readline()

print("\nThe average of the numbers is", sum / count)

Python Programming, 3/e 40

Nested Loops
 In the last chapter we saw how we

could nest if statements. We can also
nest loops.

 Suppose we change our specification to
allow any number of numbers on a line
in the file (separated by commas),
rather than one per line.

Python Programming, 3/e 41

Nested Loops
 At the top level, we will use a file-

processing loop that computes a
running sum and count.

sum = 0.0

count = 0

line = infile.readline()

while line != "":

#update sum and count for values in line

line = infile.readline()

print("\nThe average of the numbers is", sum/count)

Python Programming, 3/e 42

Nested Loops
 In the next level in we need to update the
sum and count in the body of the loop.

 Since each line of the file contains one or
more numbers separated by commas, we can
split the string into substrings, each of which
represents a number.

 Then we need to loop through the substrings,
convert each to a number, and add it to sum.

 We also need to update count.

Python Programming, 3/e 43

Nested Loops
 for xStr in line.split(","):

sum = sum + float(xStr)
count = count + 1

 Notice that this for statement uses
line, which is also the loop control
variable for the outer loop.

Python Programming, 3/e 44

Nested Loops
average7.py
Computes the average of numbers listed in a file.
Works with multiple numbers on a line.

def main():
fileName = input("What file are the numbers in? ")
infile = open(fileName,'r')
sum = 0.0
count = 0
line = infile.readline()
while line != "":

update sum and count for values in line
for xStr in line.split(","):

sum = sum + float(xStr)
count = count + 1

line = infile.readline()
print("\nThe average of the numbers is", sum / count)

Python Programming, 3/e 45

Nested Loops
 The loop that processes the numbers in each

line is indented inside of the file processing
loop.

 The outer while loop iterates once for each
line of the file.

 For each iteration of the outer loop, the inner
for loop iterates as many times as there are
numbers on the line.

 When the inner loop finishes, the next line of
the file is read, and this process begins again.

Python Programming, 3/e 46

Nested Loops
 Designing nested loops –

 Design the outer loop without worrying
about what goes inside

 Design what goes inside, ignoring the
outer loop.

 Put the pieces together, preserving the
nesting.

Python Programming, 3/e 47

Computing with Booleans
 if and while both use Boolean

expressions.
 Boolean expressions evaluate to True

or False.
 So far we’ve used Boolean expressions

to compare two values, e.g.
(while x >= 0)

Python Programming, 3/e 48

Boolean Operators
 Sometimes our simple expressions do

not seem expressive enough.
 Suppose you need to determine

whether two points are in the same
position – their x coordinates are equal
and their y coordinates are equal.

Python Programming, 3/e 49

Boolean Operators
 if p1.getX() == p2.getX():

if p1.getY() == p2.getY():
points are the same

else:
points are different

else:
points are different

 Clearly, this is an awkward way to evaluate
multiple Boolean expressions!

 Let’s check out the three Boolean operators
and, or, and not.

Python Programming, 3/e 50

Boolean Operators
 The Boolean operators and and or are

used to combine two Boolean
expressions and produce a Boolean
result.

 <expr> and <expr>

 <expr> or <expr>

Python Programming, 3/e 51

Boolean Operators
 The and of two expressions is true exactly

when both of the expressions are true.
 We can represent this in a truth table.

P Q P and Q
T T T
T F F
F T F
F F F

Python Programming, 3/e 52

Boolean Expressions
 In the truth table, P and Q represent

smaller Boolean expressions.
 Since each expression has two possible

values, there are four possible
combinations of values.

 The last column gives the value of P
and Q for each combination.

Python Programming, 3/e 53

Boolean Expressions
 The or of two expressions is true when

either expression is true.

P Q P or Q
T T T
T F T
F T T
F F F

Python Programming, 3/e 54

Boolean Expressions
 The only time or is false is when both

expressions are false.
 Also, note that or is true when both

expressions are true. This isn’t how we
normally use “or” in language.

Python Programming, 3/e 55

Boolean Operators
 The not operator computes the opposite of

a Boolean expression.
 not is a unary operator, meaning it

operates on a single expression.

P not P
T F
F T

Python Programming, 3/e 56

Boolean Operators
 We can put these operators together to

make arbitrarily complex Boolean
expressions.

 The interpretation of the expressions
relies on the precedence rules for the
operators.

Python Programming, 3/e 57

Boolean Operators
 Consider a or not b and c
 How should this be evaluated?
 The order of precedence, from high to low, is
not, and, or.

 This statement is equivalent to
(a or ((not b) and c))

 Since most people don’t memorize the
Boolean precedence rules, use parentheses to
prevent confusion.

Python Programming, 3/e 58

Boolean Operators
 To test for the co-location of two

points, we could use an and.
 if p1.getX() == p2.getX() and p2.getY() == p1.getY():

points are the same
else:

points are different

 The entire condition will be true only
when both of the simpler conditions are
true.

Python Programming, 3/e 59

Boolean Operators
 Say you’re writing a racquetball simulation.

The game is over as soon as either player has
scored 15 points.

 How can you represent that in a Boolean
expression?

 scoreA == 15 or scoreB == 15

 When either of the conditions becomes true,
the entire expression is true. If neither
condition is true, the expression is false.

Python Programming, 3/e 60

Boolean Operators
 We want to construct a loop that

continues as long as the game is not
over.

 You can do this by taking the negation of
the game-over condition as your loop
condition!

 while not(scoreA == 15 or scoreB == 15):
#continue playing

Python Programming, 3/e 61

Boolean Operators
 Some racquetball players also use a shutout

condition to end the game, where if one
player has scored 7 points and the other
person hasn’t scored yet, the game is over.

 while not(scoreA == 15 or scoreB == 15 or \
(scoreA == 7 and scoreB == 0) or \
(scoreB == 7 and scoreA == 0):

#continue playing

Python Programming, 3/e 62

Boolean Operators
 Let’s look at volleyball scoring. To win, a

volleyball team needs to win by at least two
points.

 In volleyball, a team wins at 15 points
 If the score is 15 – 14, play continues, just

as it does for 21 – 20.
 (a >= 15 and a - b >= 2) or (b >= 15 and b - a >= 2)

 (a >= 15 or b >= 15) and abs(a - b) >= 2

Python Programming, 3/e 63

Boolean Algebra
 The ability to formulate, manipulate,

and reason with Boolean expressions is
an important skill.

 Boolean expressions obey certain
algebraic laws called Boolean logic or
Boolean algebra.

Python Programming, 3/e 64

Boolean Algebra

 and has properties similar to multiplication
 or has properties similar to addition
 0 and 1 correspond to false and true,

respectively.

Algebra Boolean algebra
a * 0 = 0 a and false == false
a * 1 = a a and true == a
a + 0 = a a or false == a

Python Programming, 3/e 65

Boolean Algebra
 Anything ored with true is true:
a or true == true

 Both and and or distribute:
a or (b and c) == (a or b) and (a or c)
a and (b or c) == (a and b) or (a and c)

 Double negatives cancel out:
not(not a) == a

 DeMorgan’s laws:
not(a or b) == (not a) and (not b)
not(a and b) == (not a) or (not b)

Python Programming, 3/e 66

Boolean Algebra
 We can use these rules to simplify our Boolean

expressions.
 while not(scoreA == 15 or scoreB == 15):

#continue playing

 This is saying something like “While it is not the
case that player A has 15 or player B has 15,
continue playing.”

 Applying DeMorgan’s law:
while (not scoreA == 15) and (not scoreB == 15):

#continue playing

Python Programming, 3/e 67

Boolean Algebra
 This becomes:
while scoreA != 15 and scoreB != 15

continue playing

 Isn’t this easier to understand? “While
player A has not reached 15 and player
B has not reached 15, continue
playing.”

Python Programming, 3/e 68

Boolean Algebra
 Sometimes it’s easier to figure out when a

loop should stop, rather than when the loop
should continue.

 In this case, write the loop termination
condition and put a not in front of it. After a
couple applications of DeMorgan’s law you
are ready to go with a simpler but equivalent
expression.

Python Programming, 3/e 69

Other Common Structures
 The if and while can be used to

express every conceivable algorithm.
 For certain problems, an alternative

structure can be convenient.

Python Programming, 3/e 70

Post-Test Loop
 Say we want to write a program that is

supposed to get a nonnegative number
from the user.

 If the user types an incorrect input, the
program asks for another value.

 This process continues until a valid
value has been entered.

 This process is input validation.

Python Programming, 3/e 71

Post-Test Loop
 repeat

get a number from the user
until number is >= 0

Python Programming, 3/e 72

Post-Test Loop
 When the condition test comes after the

body of the loop it’s called a post-test
loop.

 A post-test loop always executes the
body of the code at least once.

 Python doesn’t have a built-in
statement to do this, but we can do it
with a slightly modified while loop.

Python Programming, 3/e 73

Post-Test Loop
 We seed the loop condition so we’re

guaranteed to execute the loop once.
 number = -1 # start with an illegal value

while number < 0: # to get into the loop
number = float(input("Enter a positive number: "))

 By setting number to –1, we force the loop
body to execute at least once.

Python Programming, 3/e 74

Post-Test Loop
 Some programmers prefer to simulate a

post-test loop by using the Python
break statement.

 Executing break causes Python to
immediately exit the enclosing loop.

 break is sometimes used to exit what
looks like an infinite loop.

Python Programming, 3/e 75

Post-Test Loop
 The same algorithm implemented with a
break:
while True:

number = float(input("Enter a positive number: "))
if x >= 0: break # Exit loop if number is valid

 A while loop continues as long as the
expression evaluates to true. Since True
always evaluates to true, it looks like an
infinite loop!

Python Programming, 3/e 76

Post-Test Loop
 When the value of x is nonnegative, the
break statement executes, which
terminates the loop.

 If the body of an if is only one line
long, you can place it right after the :!

 Wouldn’t it be nice if the program gave
a warning when the input was invalid?

Python Programming, 3/e 77

Post-Test Loop
 In the while loop version, this is

awkward:
number = -1
while number < 0:

number = float(input("Enter a positive number: "))
if number < 0:

print("The number you entered was not positive")

 We’re doing the validity check in two
places!

Python Programming, 3/e 78

Post-Test Loop
 Adding the warning to the break version only adds

an else statement:
while True:

number = float(input("Enter a positive number: "))
if x >= 0:

break # Exit loop if number is valid
else:

print("The number you entered was not positive.")

Python Programming, 3/e 79

Loop and a Half
 Stylistically, some programmers prefer the

following approach:
while True:

number = float(input("Enter a positive number: "))
if x >= 0: break # Loop exit
print("The number you entered was not positive")

 Here the loop exit is in the middle of the loop
body. This is what we mean by a loop and a
half.

Python Programming, 3/e 80

Loop and a Half
 The loop and a half is an elegant way to

avoid the priming read in a sentinel
loop.

 while True:
get next data item
if the item is the sentinel: break
process the item

 This method is faithful to the idea of
the sentinel loop, the sentinel value is
not processed!

Python Programming, 3/e 81

Loop and a Half

Python Programming, 3/e 82

Loop and a Half
 To use or not use break. That is the

question!
 The use of break is mostly a matter of

style and taste.
 Avoid using break often within loops,

because the logic of a loop is hard to
follow when there are multiple exits.

Python Programming, 3/e 83

Boolean Expressions
as Decisions

 Boolean expressions can be used as control
structures themselves.

 Suppose you’re writing a program that
keeps going as long as the user enters a
response that starts with ‘y’ (like our
interactive loop).

 One way you could do it:
while response[0] == "y" or response[0] == "Y":

Python Programming, 3/e 84

Boolean Expressions
as Decisions
 Be careful! You can’t take shortcuts:

while response[0] == "y" or "Y":

 Why doesn’t this work?
 Python has a bool type that internally uses 1

and 0 to represent True and False,
respectively.

 The Python condition operators, like ==,
always evaluate to a value of type bool.

Python Programming, 3/e 85

Boolean Expressions
as Decisions
 However, Python will let you evaluate

any built-in data type as a Boolean. For
numbers (int, float, and long ints), zero
is considered False, anything else is
considered True.

Python Programming, 3/e 86

Boolean Expressions
as Decisions
>>> bool(0)
False
>>> bool(1)
True
>>> bool(32)
True
>>> bool("Hello")
True
>>> bool("")
False
>>> bool([1,2,3])
True
>>> bool([])
False

Python Programming, 3/e 87

Boolean Expressions
as Decisions
 An empty sequence is interpreted as
False while any non-empty sequence
is taken to mean True.

 The Boolean operators have operational
definitions that make them useful for
other purposes.

Python Programming, 3/e 88

Boolean Expressions
as Decisions
Operator Operational definition
x and y If x is false, return x.

Otherwise, return y.
x or y If x is true, return x.

Otherwise, return y.
not x If x is false, return True.

Otherwise, return False.

Python Programming, 3/e 89

Boolean Expressions
as Decisions
 Consider x and y. In order for this to be

true, both x and y must be true.
 As soon as one of them is found to be

false, we know the expression as a
whole is false and we don’t need to
finish evaluating the expression.

 So, if x is false, Python should return a
false result, namely x.

Python Programming, 3/e 90

Boolean Expressions
as Decisions
 If x is true, then whether the

expression as a whole is true or false
depends on y.

 By returning y, if y is true, then true is
returned. If y is false, then false is
returned.

Python Programming, 3/e 91

Boolean Expressions
as Decisions
 These definitions show that Python’s

Booleans are short-circuit operators,
meaning that a true or false is returned
as soon as the result is known.

 In an and where the first expression is
false and in an or, where the first
expression is true, Python will not
evaluate the second expression.

Python Programming, 3/e 92

Boolean Expressions as
Decisions
 response[0] == "y" or "Y"

 The Boolean operator is combining two
operations.

 Here’s an equivalent expression:
(response[0] == "y") or ("Y")

 By the operational description of or, this
expression returns either True, if
response[0] equals “y”, or “Y”, both of which
are interpreted by Python as true.

Python Programming, 3/e 93

Boolean Expressions
as Decisions
 Sometimes we write programs that

prompt for information but offer a
default value obtained by simply
pressing <Enter>

 Since the string used by ans can be
treated as a Boolean, the code can be
further simplified.

Python Programming, 3/e 94

Boolean Expressions
as Decisions

 ans = input("What flavor of you want [vanilla]: ")
if ans:

flavor = ans
else:

flavor = "vanilla"

 If the user just hits <Enter>, ans will be
an empty string, which Python interprets
as false.

Python Programming, 3/e 95

Boolean Expressions
as Decisions

 We can code this even more succinctly!
ans = input("What flavor fo you want [vanilla]: ")
flavor = ans or "vanilla"

 Remember, any non-empty answer is
interpreted as True.

 This exercise could be boiled down into
one line!
flavor = input("What flavor do you want

[vanilla]:") or "vanilla"

Python Programming, 3/e 96

Boolean Expressions
as Decisions
 Again, if you understand this method,

feel free to utilize it. Just make sure
that if your code is tricky, that it’s well
documented!

Python Programming, 3/e 97

Example: A Simple Event Loop
 Modern programs incorporating

graphical user interfaces (GUIs) are
generally written in an event-driven
style.

 The program displays a graphical user
interface and then “waits” for the user
events such as clicking on a menu or
pressing a key on the keyboard.

Python Programming, 3/e 98

Example: A Simple Event Loop
 The mechanism that drives this style of

program is a so-called event loop.
Draw the GUI
While True:

get next event
if event is “quit signal”

break
process the event

clean up and exit

Python Programming, 3/e 99

Example: A Simple Event Loop
 Consider a program that opens a

graphics window and allows the user to
change its color by typing different keys
– “r” for red, etc.

 The user can quit at any time by
pressing “q”

Python Programming, 3/e 100

Example: A Simple Event Loop
event_loop1.py -- keyboard-driven color changing window

from graphics import *

def main():

win = GraphWin("Color Window", 500, 500)

Event Loop: handle key presses until user

presses the "q" key.

while True:

key = win.getKey()

if key == "q": # loop exit

break

Python Programming, 3/e 101

Example: A Simple Event Loop
#process the key

if key == "r":

win.setBackground("pink")

elif key == "w":

win.setBackground("white")

elif key == "g":

win.setBackground("lightgray")

elif key == "b":

win.setBackground("lightblue")

exit program

win.close()

Python Programming, 3/e 102

Example: A Simple Event Loop
 Each time through the event loop this

program waits for the user to press a
key on the keyboard.

 A more flexible user interface might
allow the user to interact in various
ways – typing on the keyboard,
selecting a menu item, hovering over
an icon, clicking a button, etc.

Python Programming, 3/e 103

Example: A Simple Event Loop
 The event loop would have to check for

multiple types of events rather than
waiting for one specific event.

 Let’s add the ability for the user to click
the mouse to position and type strings
into the window, a souped-up version
of chapter 4’s click-and-type example.

Python Programming, 3/e 104

Example: A Simple Event Loop
 When mixing mouse and keyboard

control, we run into a problem...
 We can no longer rely on getMouse and
getKey!

 Why????
 If we call win.getKey then the program

pauses until the user types a key. What if
the user decided to use the mouse
instead?

Python Programming, 3/e 105

Example: A Simple Event Loop
 These are modal input methosd,

because they lock the user into a
certain mode of interaction.

 We can make the event loop nonmodal
(i.e. the user is in control of how to
interact) by using checkKey and
checkMouse.

Python Programming, 3/e 106

Example: A Simple Event Loop
 These methods are similar to getKey and
getMouse, but they don’t wait for the user to
do something.

 key = win.checkKey()

 Python will check to see whether a key has
been pressed
 If one has, it will return a string that represents

that key.
 If not, it returns the empty string.

Python Programming, 3/e 107

Example: A Simple Event Loop
Draw the GUI

while True:

key = checkKey()
if key is quit signal: break

if key is valid key:

process key

click = checkMouse()

if click is valid:

process click

Clean up and Exit

Python Programming, 3/e 108

Example: A Simple Event Loop
 Each time through the loop the

program looks for a key press or a
mouse click and handles them
appropriately.

 If there is no event to process, it does
not wait, instead it just spins around
the loop and checks again!

Python Programming, 3/e 109

Example: A Simple Event Loop
event_loop2.py -- color changing window

from graphics import *

def handleKey(k, win):

if k == "r":

win.setBackground("pink")

elif k == "w":

win.setBackground("white")

elif k == "g":

win.setBackground("lightgray")

elif k == "b":

win.setBackground("lightblue")

Python Programming, 3/e 110

Example: A Simple Event Loop
def handleClick(pt, win):

pass

 Since we haven’t decided what to do
with mouse clicks yet, handleClick has
a pass statement.

 A pass statement does nothing – it
simply fills in the spot where Python is
syntactically expecting a statement.

Python Programming, 3/e 111

Example: A Simple Event Loop
def main():

win = GraphWin("Click and Type", 500, 500)

Event Loop: handle key presses and mouse clicks until user

presses the "q" key.

while True:

key = win.checkKey()

if key == "q": # loop exit

break

if key:

handleKey(key, win)

pt = win.checkMouse()

if pt:

handleClick(pt, win)

win.close()

Python Programming, 3/e 112

Example: A Simple Event Loop
 When there is no input, checkKey()

and checkMouse() both return values
that Python interprets as false.

 We can type if key: rather than
if key != ""
 You can read this as “If I got a key…”

Python Programming, 3/e 113

Example: A Simple Event Loop
 Clicking on the window initiates a basic

3 step algorithm:
1. Display an Entry box where the user

clicked.
2. Allow the user to type text into the box;

typing is terminated by hitting the return
key (<Enter>).

3. The Entry box disappears and the typed
text appears directly in the window.

Python Programming, 3/e 114

Example: A Simple Event Loop
 In step 2, we want the text the user

types to show up in the Entry box, but
we don’t want them interpreted as top-
level commands (a ‘q’ here shouldn’t
quit!)

 The program should be modal – it
should switch to text-entry mode until
the user hits a return key.

Python Programming, 3/e 115

Example: A Simple Event Loop
 How do we do this?

 Inside the main loop we nest another loop
that consumes all the keypresses until the
user hits the return key.

 Once the return key is pressed, the inner
loop terminates and the program continues
on.

Python Programming, 3/e 116

Example: A Simple Event Loop
def handleClick(pt, win):

create an Entry for user to type in

entry = Entry(pt, 10)

entry.draw(win)

Go modal: loop until user types Return key

while True:

key = win.getKey()

if key == "Return":

break

Python Programming, 3/e 117

Example: A Simple Event Loop
undraw the entry and create and draw Text

entry.undraw()

typed = entry.getText()

Text(pt, typed).draw(win)

clear (ignore) any mouse click that occurred

during text entry

win.checkMouse()

Python Programming, 3/e 118

Example: A Simple Event Loop
 The body of this loop literally does

nothing.
 It could have been rewritten as
while win.getKey() != "Return":

pass

 The last line ensures the text entry is
truly modal.

Python Programming, 3/e 119

Example: A Simple Event Loop
 Mouse clicks before the return key was

pressed should be ignored.
 Since checkMouse only returns mouse

clicks that have happened since the last
call to checkMouse, calling the function
here has the effect of clearing any click
that may have occurred but not yet
been checked for.

	Python Programming:�An Introduction�To Computer Science
	Objectives
	Objectives
	Objectives
	For Loops: A Quick Review
	For Loops: A Quick Review
	For Loops: A Quick Review
	For Loops: A Quick Review
	For Loops: A Quick Review
	For Loops: A Quick Review
	Indefinite Loops
	Indefinite Loops
	Indefinite Loops
	Indefinite Loops
	Indefinite Loop
	Indefinite Loop
	Indefinite Loop
	Indefinite Loop
	Indefinite Loop
	Interactive Loops
	Interactive Loops
	Interactive Loops
	Interactive Loops
	Interactive Loops
	Sentinel Loops
	Sentinel Loops
	Sentinel Loops
	Sentinel Loops
	Sentinel Loops
	Sentinel Loops
	Sentinel Loops
	Sentinel Loops
	Sentinel Loops
	Sentinel Loops
	File Loops
	File Loops
	File Loops
	File Loops
	File Loops
	Nested Loops
	Nested Loops
	Nested Loops
	Nested Loops
	Nested Loops
	Nested Loops
	Nested Loops
	Computing with Booleans
	Boolean Operators
	Boolean Operators
	Boolean Operators
	Boolean Operators
	Boolean Expressions
	Boolean Expressions
	Boolean Expressions
	Boolean Operators	
	Boolean Operators
	Boolean Operators
	Boolean Operators
	Boolean Operators
	Boolean Operators
	Boolean Operators
	Boolean Operators
	Boolean Algebra
	Boolean Algebra
	Boolean Algebra
	Boolean Algebra
	Boolean Algebra
	Boolean Algebra
	Other Common Structures
	Post-Test Loop
	Post-Test Loop
	Post-Test Loop
	Post-Test Loop
	Post-Test Loop
	Post-Test Loop
	Post-Test Loop
	Post-Test Loop
	Post-Test Loop
	Loop and a Half
	Loop and a Half
	Loop and a Half
	Loop and a Half
	Boolean Expressions�as Decisions
	Boolean Expressions�as Decisions
	Boolean Expressions�as Decisions
	Boolean Expressions�as Decisions
	Boolean Expressions�as Decisions
	Boolean Expressions�as Decisions
	Boolean Expressions�as Decisions
	Boolean Expressions�as Decisions
	Boolean Expressions�as Decisions
	Boolean Expressions as Decisions
	Boolean Expressions�as Decisions
	Boolean Expressions�as Decisions
	Boolean Expressions�as Decisions
	Boolean Expressions�as Decisions
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop
	Example: A Simple Event Loop

