
Python Programming, 3/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 7
Decision Structures

Python Programming, 3/e 2

Objectives
 To understand the programming

pattern simple decision and its
implementation using a Python if
statement.

 To understand the programming
pattern two-way decision and its
implementation using a Python if-
else statement.

Python Programming, 3/e 3

Objectives
 To understand the programming

pattern multi-way decision and its
implementation using a Python if-
elif-else statement.

 To understand the idea of exception
handling and be able to write simple
exception handling code that catches
standard Python run-time errors.

Python Programming, 3/e 4

Objectives
 To understand the concept of Boolean

expressions and the bool data type.
 To be able to read, write, and

implement algorithms that employ
decision structures, including those that
employ sequences of decisions and
nested decision structures.

Python Programming, 3/e 5

Simple Decisions
 So far, we’ve viewed programs as

sequences of instructions that are
followed one after the other.

 While this is a fundamental
programming concept, it is not
sufficient in itself to solve every
problem. We need to be able to alter
the sequential flow of a program to suit
a particular situation.

Python Programming, 3/e 6

Simple Decisions
 Control structures allow us to alter this

sequential program flow.
 In this chapter, we’ll learn about

decision structures, which are
statements that allow a program to
execute different sequences of
instructions for different cases, allowing
the program to “choose” an appropriate
course of action.

Python Programming, 3/e 7

Example:
Temperature Warnings

 Let’s return to our Celsius to Fahrenheit temperature
conversion program from Chapter 2.

convert.py
A program to convert Celsius temps to Fahrenheit
by: Susan Computewell

def main():
celsius = float(input("What is the Celsius temperature? "))
fahrenheit = 9/5 * celsius + 32
print("The temperature is", fahrenheit, "degrees Fahrenheit.")

Python Programming, 3/e 8

Example:
Temperature Warnings
 Let’s say we want to modify the

program to print a warning when the
weather is extreme.

 Any temperature over 90 degrees
Fahrenheit and lower than 30 degrees
Fahrenheit will cause a hot and cold
weather warning, respectively.

Python Programming, 3/e 9

Example:
Temperature Warnings

Input the temperature in degrees Celsius
(call it celsius)
Calculate fahrenheit as 9/5 celsius + 32
Output fahrenheit
If fahrenheit > 90

print a heat warning
If fahrenheit > 30

print a cold warning

Python Programming, 3/e 10

Example:
Temperature Warnings
 This new algorithm has two decisions at

the end. The indentation indicates that
a step should be performed only if the
condition listed in the previous line is
true.

Python Programming, 3/e 11

Example:
Temperature Warnings

Python Programming, 3/e 12

Example:
Temperature Warnings

convert2.py
A program to convert Celsius temps to Fahrenheit.
This version issues heat and cold warnings.

def main():
celsius = float(input("What is the Celsius temperature? "))
fahrenheit = 9 / 5 * celsius + 32
print("The temperature is", fahrenheit, "degrees fahrenheit.")
if fahrenheit >= 90:

print("It's really hot out there, be careful!")
if fahrenheit <= 30:

print("Brrrrr. Be sure to dress warmly")

main()

Python Programming, 3/e 13

Example:
Temperature Warnings
 The Python if statement is used to

implement the decision.
 if <condition>:

<body>

 The body is a sequence of one or more
statements indented under the if
heading.

Python Programming, 3/e 14

Example:
Temperature Warnings
 The semantics of the if should be clear.

 First, the condition in the heading is evaluated.
 If the condition is true, the sequence of

statements in the body is executed, and then
control passes to the next statement in the
program.

 If the condition is false, the statements in the
body are skipped, and control passes to the next
statement in the program.

Python Programming, 3/e 15

Example:
Temperature Warnings

Python Programming, 3/e 16

Example:
Temperature Warnings
 The body of the if either executes or

not depending on the condition. In any
case, control then passes to the next
statement after the if.

 This is a one-way or simple decision.

Python Programming, 3/e 17

Forming Simple Conditions
 What does a condition look like?
 At this point, let’s use simple

comparisons.
 <expr> <relop> <expr>

 <relop> is short for relational operator

Python Programming, 3/e 18

Forming Simple Conditions
Python Mathematics Meaning

< < Less than
<= ≤ Less than or equal to
== = Equal to
>= ≥ Greater than or equal to
> > Greater than
!= ≠ Not equal to

Python Programming, 3/e 19

Forming Simple Conditions
 Notice the use of == for equality. Since

Python uses = to indicate assignment, a
different symbol is required for the
concept of equality.

 A common mistake is using = in
conditions!

Python Programming, 3/e 20

Forming Simple Conditions
 Conditions may compare either

numbers or strings.
 When comparing strings, the ordering is

lexigraphic, meaning that the strings
are sorted based on the underlying
Unicode. Because of this, all upper-case
Latin letters come before lower-case
letters. (“Bbbb” comes before “aaaa”)

Python Programming, 3/e 21

Forming Simple Conditions
 Conditions are based on Boolean expressions,

named for the English mathematician George
Boole.

 When a Boolean expression is evaluated, it
produces either a value of true (meaning the
condition holds), or it produces false (it does
not hold).

 Some computer languages use 1 and 0 to
represent “true” and “false”.

Python Programming, 3/e 22

Forming Simple Conditions
 Boolean conditions are of type bool and the

Boolean values of true and false are
represented by the literals True and False.

>>> 3 < 4
True
>>> 3 * 4 < 3 + 4
False
>>> "hello" == "hello"
True
>>> "Hello" < "hello"
True

Python Programming, 3/e 23

Example: Conditional Program
Execution
 There are several ways of running Python

programs.
 Some modules are designed to be run directly.

These are referred to as programs or scripts.
 Others are made to be imported and used by

other programs. These are referred to as libraries.
 Sometimes we want to create a hybrid that can be

used both as a stand-alone program and as a
library.

Python Programming, 3/e 24

Example: Conditional Program
Execution
 When we want to start a program once

it’s loaded, we include the line main()
at the bottom of the code.

 Since Python evaluates the lines of the
program during the import process, our
current programs also run when they
are imported into an interactive Python
session or into another Python program.

Python Programming, 3/e 25

Example: Conditional Program
Execution
 Generally, when we import a module,

we don’t want it to execute!
 In a program that can be either run

stand-alone or loaded as a library, the
call to main at the bottom should be
made conditional, e.g.
if <condition>:

main()

Python Programming, 3/e 26

Example: Conditional Program
Execution
 Whenever a module is imported, Python

creates a special variable in the module
called __name__ to be the name of the
imported module.

 Example:
>>> import math
>>> math.__name__
'math'

Python Programming, 3/e 27

Example: Conditional Program
Execution
 When imported, the __name__ variable

inside the math module is assigned the
string ‘math’.

 When Python code is run directly and
not imported, the value of __name__ is
‘__main__’. E.g.:
>>> __name__
'__main__'

Python Programming, 3/e 28

Example: Conditional Program
Execution
 To recap: if a module is imported, the code in

the module will see a variable called
__name__ whose value is the name of the
module.

 When a file is run directly, the code will see
the value ‘__main__’.

 We can change the final lines of our
programs to:
if __name__ == '__main__':

main()
 Virtually every Python module ends this way!

Python Programming, 3/e 29

Two-Way Decisions
 Consider the quadratic program as we left it.
quadratic.py
A program that computes the real roots of a quadratic equation.
Note: This program crashes if the equation has no real roots.

import math

def main():
print("This program finds the real solutions to a quadratic\n")

a = float(input("Enter coefficient a: "))
b = float(input("Enter coefficient b: "))
c = float(input("Enter coefficient c: "))

discRoot = math.sqrt(b * b - 4 * a * c)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)

print("\nThe solutions are:", root1, root2)

Python Programming, 3/e 30

Two-Way Decisions
 As per the comment, when

b2-4ac < 0, the program crashes.
This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 1,1,2

Traceback (most recent call last):
File "C:\Documents and Settings\Terry\My Documents\Teaching\W04\CS
120\Textbook\code\chapter3\quadratic.py", line 21, in -toplevel-
main()

File "C:\Documents and Settings\Terry\My Documents\Teaching\W04\CS
120\Textbook\code\chapter3\quadratic.py", line 14, in main
discRoot = math.sqrt(b * b - 4 * a * c)

ValueError: math domain error

Python Programming, 3/e 31

Two-Way Decisions
 We can check for this situation. Here’s our first attempt.
quadratic2.py
A program that computes the real roots of a quadratic equation.
Bad version using a simple if to avoid program crash

import math

def main():
print("This program finds the real solutions to a quadratic\n")
a = float(input("Enter coefficient a: "))
b = float(input("Enter coefficient b: "))
c = float(input("Enter coefficient c: "))
discrim = b * b - 4 * a * c
if discrim >= 0:

discRoot = math.sqrt(discrim)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print("\nThe solutions are:", root1, root2)

Python Programming, 3/e 32

Two-Way Decisions
 We first calculate the discriminant

(b2-4ac) and then check to make sure
it’s nonnegative. If it is, the program
proceeds and we calculate the roots.

 Look carefully at the program. What’s
wrong with it? Hint: What happens
when there are no real roots?

Python Programming, 3/e 33

Two-Way Decisions
This program finds the real solutions to a quadratic

Enter coefficient a: 1

Enter coefficient b: 1

Enter coefficient c: 1

>>>

 This is almost worse than the version that
crashes, because we don’t know what
went wrong!

Python Programming, 3/e 34

Two-Way Decisions
 We could add another if to the end:

if discrim < 0:
print("The equation has no real roots!")

 This works, but feels wrong. We have
two decisions, with mutually exclusive
outcomes (if discrim >= 0 then
discrim < 0 must be false, and vice
versa).

Python Programming, 3/e 35

Two-Way Decisions

Python Programming, 3/e 36

Two-Way Decisions
 In Python, a two-way decision can be

implemented by attaching an else
clause onto an if clause.

 This is called an if-else statement:
if <condition>:

<statements>
else:

<statements>

Python Programming, 3/e 37

Two-Way Decisions
 When Python encounters this structure, it

first evaluates the condition. If the condition
is true, the statements under the if are
executed.

 If the condition is false, the statements under
the else are executed.

 In either case, the statements following the
if-else are executed after either set of
statements are executed.

Python Programming, 3/e 38

Two-Way Decisions
quadratic3.py
A program that computes the real roots of a quadratic equation.
Illustrates use of a two-way decision

import math

def main():
print "This program finds the real solutions to a quadratic\n"
a = float(input("Enter coefficient a: "))
b = float(input("Enter coefficient b: "))
c = float(input("Enter coefficient c: "))
discrim = b * b - 4 * a * c
if discrim < 0:

print("\nThe equation has no real roots!")
else:

discRoot = math.sqrt(b * b - 4 * a * c)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print ("\nThe solutions are:", root1, root2)

Python Programming, 3/e 39

Two-Way Decisions
This program finds the real solutions to a quadratic

Enter coefficient a: 1

Enter coefficient b: 1

Enter coefficient c: 2

The equation has no real roots!

>>>

This program finds the real solutions to a quadratic

Enter coefficient a: 2

Enter coefficient b: 5

Enter coefficient c: 2

The solutions are: -0.5 -2.0

Python Programming, 3/e 40

Multi-Way Decisions
The newest program is great, but it still
has some quirks!
This program finds the real solutions to a quadratic

Enter coefficient a: 1

Enter coefficient b: 2

Enter coefficient c: 1

The solutions are: -1.0 -1.0

Python Programming, 3/e 41

Multi-Way Decisions
 While correct, this method might be

confusing for some people. It looks like
it has mistakenly printed the same
number twice!

 Double roots occur when the
discriminant is exactly 0, and then the
roots are –b/2a.

 It looks like we need a three-way
decision!

Python Programming, 3/e 42

Multi-Way Decisions
 Check the value of discrim

when < 0: handle the case of no roots
when = 0: handle the case of a double root
when > 0: handle the case of two distinct

roots

 We can do this with two if-else
statements, one inside the other.

 Putting one compound statement inside
of another is called nesting.

Python Programming, 3/e 43

Multi-Way Decisions
if discrim < 0:

print("Equation has no real roots")

else:

if discrim == 0:

root = -b / (2 * a)

print("There is a double root at", root)

else:

Do stuff for two roots

Python Programming, 3/e 44

Multi-Way Decisions

Python Programming, 3/e 45

Multi-Way Decisions
 Imagine if we needed to make a five-

way decision using nesting. The if-
else statements would be nested four
levels deep!

 There is a construct in Python that
achieves this, combining an else
followed immediately by an if into a
single elif.

Python Programming, 3/e 46

Multi-Way Decisions
 if <condition1>:

<case1 statements>
elif <condition2>:

<case2 statements>
elif <condition3>:

<case3 statements>
…
else:

<default statements>

Python Programming, 3/e 47

Multi-Way Decisions
 This form sets off any number of mutually

exclusive code blocks.
 Python evaluates each condition in turn

looking for the first one that is true. If a true
condition is found, the statements indented
under that condition are executed, and
control passes to the next statement after the
entire if-elif-else.

 If none are true, the statements under else
are performed.

Python Programming, 3/e 48

Multi-Way Decisions
 The else is optional. If there is no
else, it’s possible no indented block
would be executed.

Python Programming, 3/e 49

Multi-Way Decisions
quadratic4.py
import math

def main():
print("This program finds the real solutions to a quadratic\n")

a = float(input("Enter coefficient a: "))
b = float(input("Enter coefficient b: "))
c = float(input("Enter coefficient c: "))

discrim = b * b - 4 * a * c
if discrim < 0:

print("\nThe equation has no real roots!")
elif discrim == 0:

root = -b / (2 * a)
print("\nThere is a double root at", root)

else:
discRoot = math.sqrt(b * b - 4 * a * c)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print("\nThe solutions are:", root1, root2)

Python Programming, 3/e 50

Exception Handling
 In the quadratic program we used

decision structures to avoid taking the
square root of a negative number, thus
avoiding a run-time error.

 This is true for many programs:
decision structures are used to protect
against rare but possible errors.

Python Programming, 3/e 51

Exception Handling
 In the quadratic example, we checked the

data before calling sqrt. Sometimes
functions will check for errors and return a
special value to indicate the operation was
unsuccessful.

 E.g., a different square root operation might
return a –1 to indicate an error (since square
roots are never negative, we know this value
will be unique).

Python Programming, 3/e 52

Exception Handling
 discRt = otherSqrt(b*b - 4*a*c)

if discRt < 0:
print("No real roots.“)

else:
...

 Sometimes programs get so many checks for
special cases that the algorithm becomes
hard to follow.

 Programming language designers have come
up with a mechanism to handle exception
handling to solve this design problem.

Python Programming, 3/e 53

Exception Handling
 The programmer can write code that

catches and deals with errors that arise
while the program is running, i.e., “Do
these steps, and if any problem crops
up, handle it this way.”

 This approach obviates the need to do
explicit checking at each step in the
algorithm.

Python Programming, 3/e 54

Exception Handling
quadratic5.py
import math

def main():
print ("This program finds the real solutions to a quadratic\n")

try:
a = float(input("Enter coefficient a: "))
b = float(input("Enter coefficient b: "))
c = float(input("Enter coefficient c: "))
discRoot = math.sqrt(b * b - 4 * a * c)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print("\nThe solutions are:", root1, root2)

except ValueError:
print("\nNo real roots")

Python Programming, 3/e 55

Exception Handling
 The try statement has the following form:
try:

<body>
except <ErrorType>:

<handler>
 When Python encounters a try statement, it

attempts to execute the statements inside the
body.

 If there is no error, control passes to the next
statement after the try…except.

Python Programming, 3/e 56

Exception Handling
 If an error occurs while executing the body,

Python looks for an except clause with a
matching error type. If one is found, the
handler code is executed.

 The original program generated this error
with a negative discriminant:
Traceback (most recent call last):
File "C:\Documents and Settings\Terry\My

Documents\Teaching\W04\CS120\Textbook\code\chapter3\quadratic.py", line 21, in
-toplevel-

main()
File "C:\Documents and Settings\Terry\My Documents\Teaching\W04\CS

120\Textbook\code\chapter3\quadratic.py", line 14, in main
discRoot = math.sqrt(b * b - 4 * a * c)

ValueError: math domain error

Python Programming, 3/e 57

Exception Handling
 The last line, “ValueError: math domain
error”, indicates the specific type of error.

 Here’s the new code in action:
This program finds the real solutions to a quadratic

Enter coefficient a: 1

Enter coefficient b: 1

Enter coefficient c: 1

No real roots

Python Programming, 3/e 58

Exception Handling
 Instead of crashing, the exception handler

prints a message indicating that there are no
real roots.

 The try…except can be used to catch any
kind of error and provide for a graceful exit.

 A single try statement can have multiple
except clauses.

Python Programming, 3/e 59

Exception Handling
quadratic6.py
import math

def main():
print("This program finds the real solutions to a quadratic\n")

try:
a = float(input("Enter coefficient a: "))
b = float(input("Enter coefficient b: "))
c = float(input("Enter coefficient c: "))
discRoot = math.sqrt(b * b - 4 * a * c)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print("\nThe solutions are:", root1, root2)

except ValueError as excObj:
if str(excObj) == "math domain error":

print("No Real Roots")
else:

print("Invalid coefficient given.")
except:

print("\nSomething went wrong, sorry!")

Python Programming, 3/e 60

Exception Handling
 The multiple excepts act like elifs. If an

error occurs, Python will try each except
looking for one that matches the type of
error.

 The bare except at the bottom acts like an
else and catches any errors without a
specific match.

 If there was no bare except at the end and
none of the except clauses match, the
program would still crash and report an error.

Python Programming, 3/e 61

Exception Handling
 Exceptions themselves are a type of

object.
 If you follow the error type with an

identifier in an except clause, Python
will assign to that identifier the actual
exception object.

Python Programming, 3/e 62

Study in Design: Max of Three
 Now that we have decision structures,

we can solve more complicated
programming problems. The negative is
that writing these programs becomes
harder!

 Suppose we need an algorithm to find
the largest of three numbers.

Python Programming, 3/e 63

Study in Design: Max of Three
def main():

x1, x2, x3 = eval(input("Please enter three values: "))

missing code sets max to the value of the largest

print("The largest value is", maxval)

Python Programming, 3/e 64

Strategy 1:
Compare Each to All
 This looks like a three-way decision,

where we need to execute one of the
following:
maxval = x1
maxval = x2
maxval = x3

 All we need to do now is preface each
one of these with the right condition!

Python Programming, 3/e 65

Strategy 1:
Compare Each to All
 Let’s look at the case where x1 is the largest.
 if x1 >= x2 >= x3:

maxval = x1

 Is this syntactically correct?
 Many languages would not allow this compound

condition
 Python does allow it, though. It’s equivalent to

x1 ≥ x2 ≥ x3.

Python Programming, 3/e 66

Strategy 1:
Compare Each to All
 Whenever you write a decision, there

are two crucial questions:
1. When the condition is true, is executing

the body of the decision the right action
to take?
 x1 is at least as large as x2 and x3, so

assigning maxval to x1 is OK.
 Always pay attention to borderline values!!

Python Programming, 3/e 67

Strategy 1:
Compare Each to All

2. Secondly, ask the converse of the first
question, namely, are we certain that this
condition is true in all cases where x1 is
the max?
 Suppose the values are 5, 2, and 4.
 Clearly, x1 is the largest, but does x1 ≥ x2 ≥

x3 hold?
 We don’t really care about the relative ordering

of x2 and x3, so we can make two separate
tests: x1 >= x2 and x1 >= x3.

Python Programming, 3/e 68

Strategy 1:
Compare Each to All
 We can separate these conditions with and!
if x1 >= x2 and x1 >= x3:

maxval = x1

elif x2 >= x1 and x2 >= x3:

maxval = x2

else:

maxval = x3

 We’re comparing each possible value against
all the others to determine which one is
largest.

Python Programming, 3/e 69

Strategy 1:
Compare Each to All
 What would happen if we were trying to

find the max of five values?
 We would need four Boolean

expressions, each consisting of four
conditions anded together.

 Yuck!

Python Programming, 3/e 70

Strategy 2: Decision Tree
 We can avoid the redundant tests of

the previous algorithm using a decision
tree approach.

 Suppose we start with x1 >= x2. This
knocks either x1 or x2 out of
contention to be the max.

 If the conidition is true, we need to see
which is larger, x1 or x3.

Python Programming, 3/e 71

Strategy 2: Decision Tree
if x1 >= x2:

if x1 >= x3:
maxval = x1

else:
maxval = x3

else:
if x2 >= x3:

maxval = x2
else

maxval = x3

Python Programming, 3/e 72

Strategy 2: Decision Tree

Python Programming, 3/e 73

Strategy 2: Decision Tree
 This approach makes exactly two

comparisons, regardless of the ordering
of the original three variables.

 However, this approach is more
complicated than the first. To find the
max of four values you’d need if-
elses nested three levels deep with
eight assignment statements!

Python Programming, 3/e 74

Strategy 3:
Sequential Processing
 How would you solve the problem?
 You could probably look at three numbers

and just know which is the largest. But what
if you were given a list of a hundred
numbers?

 One strategy is to scan through the list
looking for a big number. When one is found,
mark it, and continue looking. If you find a
larger value, mark it, erase the previous
mark, and continue looking.

Python Programming, 3/e 75

Strategy 3:
Sequential Processing

Python Programming, 3/e 76

Strategy 3:
Sequential Processing
 This idea can easily be translated into

Python.
maxval = x1

if x2 > maxval:

maxval = x2

if x3 > maxval:

maxval = x3

Python Programming, 3/e 77

Strategy 3:
Sequential Programming
 This process is repetitive and lends

itself to using a loop.
 We prompt the user for a number, we

compare it to our current max, if it is
larger, we update the max value,
repeat.

Python Programming, 3/e 78

Strategy 3:
Sequential Programming
program: maxn.py
Finds the maximum of a series of numbers

def main():
n = int(input("How many numbers are there? "))

Set max to be the first value
max = float(input("Enter a number >> "))

Now compare the n-1 successive values
for i in range(n-1):

x = float(input("Enter a number >> "))
if x > max:

max = x

print("The largest value is", max)

Python Programming, 3/e 79

Strategy 4:
Use Python
 Python has a built-in function called
max that returns the largest of its
parameters.

 def main():
x1, x2, x3 = eval(input("Please enter three values: "))
print("The largest value is", max(x1, x2, x3))

Python Programming, 3/e 80

Some Lessons
 There’s usually more than one way to solve a

problem.
 Don’t rush to code the first idea that pops

out of your head. Think about the design
and ask if there’s a better way to approach
the problem.

 Your first task is to find a correct
algorithm. After that, strive for clarity,
simplicity, efficiency, scalability, and
elegance.

Python Programming, 3/e 81

Some Lessons
 Be the computer.

 One of the best ways to formulate an
algorithm is to ask yourself how you would
solve the problem.

 This straightforward approach is often
simple, clear, and efficient enough.

Python Programming, 3/e 82

Some Lessons
 Generality is good.

 Consideration of a more general problem
can lead to a better solution for some
special case.

 If the max of n program is just as easy to
write as the max of three, write the more
general program because it’s more likely to
be useful in other situations.

Python Programming, 3/e 83

Some Lessons
 Don’t reinvent the wheel.

 If the problem you’re trying to solve is one
that lots of other people have encountered,
find out if there’s already a solution for it!

 As you learn to program, designing
programs from scratch is a great
experience!

 Truly expert programmers know when to
borrow.

	Python Programming:�An Introduction to�Computer Science
	Objectives
	Objectives
	Objectives
	Simple Decisions
	Simple Decisions
	Example:�Temperature Warnings
	Example:�Temperature Warnings
	Example:�Temperature Warnings
	Example:�Temperature Warnings
	Example:�Temperature Warnings
	Example:�Temperature Warnings
	Example:�Temperature Warnings
	Example:�Temperature Warnings
	Example:�Temperature Warnings
	Example:�Temperature Warnings
	Forming Simple Conditions
	Forming Simple Conditions
	Forming Simple Conditions
	Forming Simple Conditions
	Forming Simple Conditions
	Forming Simple Conditions
	Example: Conditional Program Execution
	Example: Conditional Program Execution
	Example: Conditional Program Execution
	Example: Conditional Program Execution
	Example: Conditional Program Execution
	Example: Conditional Program Execution
	Two-Way Decisions
	Two-Way Decisions
	Two-Way Decisions
	Two-Way Decisions
	Two-Way Decisions
	Two-Way Decisions
	Two-Way Decisions
	Two-Way Decisions
	Two-Way Decisions
	Two-Way Decisions
	Two-Way Decisions
	Multi-Way Decisions
	Multi-Way Decisions
	Multi-Way Decisions
	Multi-Way Decisions
	Multi-Way Decisions
	Multi-Way Decisions
	Multi-Way Decisions
	Multi-Way Decisions
	Multi-Way Decisions
	Multi-Way Decisions
	Exception Handling
	Exception Handling
	Exception Handling
	Exception Handling
	Exception Handling
	Exception Handling
	Exception Handling
	Exception Handling
	Exception Handling
	Exception Handling
	Exception Handling
	Exception Handling
	Study in Design: Max of Three
	Study in Design: Max of Three
	Strategy 1:�Compare Each to All
	Strategy 1:�Compare Each to All
	Strategy 1:�Compare Each to All
	Strategy 1:�Compare Each to All
	Strategy 1:�Compare Each to All
	Strategy 1:�Compare Each to All
	Strategy 2: Decision Tree
	Strategy 2: Decision Tree
	Strategy 2: Decision Tree
	Strategy 2: Decision Tree
	Strategy 3:�Sequential Processing
	Strategy 3:�Sequential Processing
	Strategy 3:�Sequential Processing
	Strategy 3:�Sequential Programming
	Strategy 3:�Sequential Programming
	Strategy 4:�Use Python
	Some Lessons
	Some Lessons
	Some Lessons
	Some Lessons

