
Python Programming, 3/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 3
Computing with Numbers

Python Programming, 3/e 2

Objectives
 To understand the concept of data

types.
 To be familiar with the basic numeric

data types in Python.
 To understand the fundamental

principles of how numbers are
represented on a computer.

Python Programming, 3/e 3

Objectives (cont.)
 To be able to use the Python math

library.
 To understand the accumulator

program pattern.
 To be able to read and write programs

that process numerical data.

Python Programming, 3/e 4

Numeric Data Types
 The information that is stored and

manipulated by computer programs is
referred to as data.

 There are two different kinds of
numbers!
 (5, 4, 3, 6) are whole numbers – they

don’t have a fractional part
 (.25, .10, .05, .01) are decimal fractions

Python Programming, 3/e 5

Numeric Data Types
 Inside the computer, whole numbers and

decimal fractions are represented quite
differently!

 We say that decimal fractions and whole
numbers are two different data types.

 The data type of an object determines
what values it can have and what
operations can be performed on it.

Python Programming, 3/e 6

Numeric Data Types
 Whole numbers are represented using

the integer (int for short) data type.
 These values can be positive or

negative whole numbers.

Python Programming, 3/e 7

Numeric Data Types
 Numbers that can have fractional parts

are represented as floating point (or
float) values.

 How can we tell which is which?
 A numeric literal without a decimal point

produces an int value
 A literal that has a decimal point is

represented by a float (even if the
fractional part is 0)

Python Programming, 3/e 8

Numeric Data Types
 Python has a special function to tell us the

data type of any value.
>>> type(3)
<class 'int'>
>>> type(3.1)
<class 'float'>
>>> type(3.0)
<class 'float'>
>>> myInt = 32
>>> type(myInt)
<class 'int'>
>>>

Python Programming, 3/e 9

Numeric Data Types
 Why do we need two number types?

 Values that represent counts can’t be fractional
(you can’t have 3 ½ quarters)

 Most mathematical algorithms are very efficient
with integers

 The float type stores only an approximation to the
real number being represented!

 Since floats aren’t exact, use an int whenever
possible!

Python Programming, 3/e 10

Numeric Data Types
 Operations on ints produce ints, operations

on floats produce floats (except for /).
>>> 3.0+4.0
7.0
>>> 3+4
7
>>> 3.0*4.0
12.0
>>> 3*4
12
>>> 10.0/3.0
3.3333333333333335
>>> 10/3
3.3333333333333335
>>> 10 // 3
3
>>> 10.0 // 3.0
3.0

Python Programming, 3/e 11

Numeric Data Types
 Integer division produces a whole

number.
 That’s why 10//3 = 3!
 Think of it as ‘gozinta’, where 10//3 = 3

since 3 gozinta (goes into) 10 3 times
(with a remainder of 1)

 10%3 = 1 is the remainder of the
integer division of 10 by 3.

 a = (a//b)(b) + (a%b)

Python Programming, 3/e 12

Type Conversions & Rounding
 We know that combining an int with an

int produces an int, and combining a
float with a float produces a float.

 What happens when you mix an int and
float in an expression?
x = 5.0 * 2

 What do you think should happen?

Python Programming, 3/e 13

Type Conversions & Rounding
 For Python to evaluate this expression,

it must either convert 5.0 to 5 and do
an integer multiplication, or convert 2
to 2.0 and do a floating point
multiplication.

 Converting a float to an int will lose
information

 Ints can be converted to floats by
adding “.0”

Python Programming, 3/e 14

Type Conversion & Rounding
 In mixed-typed expressions Python will

convert ints to floats.
 Sometimes we want to control the type

conversion. This is called explicit typing.
 Converting to an int simply discards

the fractional part of a float – the
value is truncated, not rounded.

Type Conversion & Rounding
 To round off numbers, use the built-in
round function which rounds to the
nearest whole value.

 If you want to round a float into
another float value, you can supply a
second parameter that specifies the
number of digits after the decimal
point.

Python Programming, 3/e 15

Python Programming, 3/e 16

Type Conversions & Rounding
>>> float(22//5)
4.0
>>> int(4.5)
4
>>> int(3.9)
3
>>> round(3.9)

4

>>> round(3)

3

>>> round(3.1415926, 2)

3.14

Type Conversions & Rounding
>>> int("32")

32

>>> float("32")

32.0

 This is useful as a secure alternative to
the use of eval for getting numeric
data from the user.

Python Programming, 3/e 17

Type Conversions & Rounding
 Using int instead of eval ensures the

user can only enter valid whole
numbers – illegal (non-int) inputs will
cause the program to crash with an
error message.

 One downside – this method does not
accommodate simultaneous input.

Python Programming, 3/e 18

Type Conversions & Rounding
change.py

A program to calculate the value of some change in dollars

def main():

print("Change Counter")

print()

print("Please enter the count of each coin type.")

quarters = int(input("Quarters: "))

dimes = int(input("Dimes: "))

nickels = int(input("Nickels: "))

pennies = int(input("Pennies: "))

total = quarters * .25 + dimes * .10 + nickels * .05 + pennies * .01

print()

print("The total value of your change is", total)

Python Programming, 3/e 19

Python Programming, 3/e 20

Using the Math Library
 Besides (+, -, *, /, //, **, %, abs), we

have lots of other math functions
available in a math library.

 A library is a module with some useful
definitions/functions.

Python Programming, 3/e 21

Using the Math Library
 Let’s write a program to compute the

roots of a quadratic equation!

 The only part of this we don’t know
how to do is find a square root… but
it’s in the math library!

2 4
2

b b acx
a

− ± −
=

Python Programming, 3/e 22

Using the Math Library
 To use a library, we need to make sure

this line is in our program:
import math

 Importing a library makes whatever
functions are defined within it available
to the program.

Python Programming, 3/e 23

Using the Math Library
 To access the sqrt library routine, we

need to access it as math.sqrt(x).
 Using this dot notation tells Python to

use the sqrt function found in the math
library module.

 To calculate the root, you can do
discRoot = math.sqrt(b*b – 4*a*c)

Python Programming, 3/e 24

Using the Math Library
quadratic.py
A program that computes the real roots of a quadratic equation.
Illustrates use of the math library.
Note: This program crashes if the equation has no real roots.

import math # Makes the math library available.

def main():
print("This program finds the real solutions to a quadratic")
print()

a, b, c = eval(input("Please enter the coefficients (a, b, c): "))

discRoot = math.sqrt(b * b - 4 * a * c)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)

print()
print("The solutions are:", root1, root2)

Python Programming, 3/e 25

Using the Math Library
This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 3, 4, -1

The solutions are: 0.215250437022 -1.54858377035

 What do you suppose this means?
This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 1, 2, 3

Traceback (most recent call last):
File "<pyshell#26>", line 1, in -toplevel-

main()
File "C:\Documents and Settings\Terry\My Documents\Teaching\W04\CS

120\Textbook\code\chapter3\quadratic.py", line 14, in main
discRoot = math.sqrt(b * b - 4 * a * c)

ValueError: math domain error
>>>

Python Programming, 3/e 26

Using the Math Library
 If a = 1, b = 2, c = 3, then we are

trying to take the square root of a
negative number!

 Using the sqrt function is more efficient
than using **. How could you use ** to
calculate a square root?

Using the Math Library
Python Mathematics English

pi An approximation of pi
e e An approximation of e

sqrt(x) The square root of x
sin(x) sin x The sine of x
cos(x) cos x The cosine of x
tan(x) tan x The tangent of x
asin(x) arcsin x The inverse of sine x
acos(x) arccos x The inverse of cosine x
atan(x) arctan x The inverse of tangent x

Python Programming, 3/e 27

π

x

Using the Math Library
Python Mathematics English

log(x) ln x The natural (base e) logarithm of x
log10(x) The common (base 10) logarithm of x
exp(x) The exponential of x
ceil(x) The smallest whole number >= x
floor(x) The largest whole number <= x

Python Programming, 3/e 28

10log x
xe

x
x

Python Programming, 3/e 29

Accumulating Results:
Factorial
 Say you are waiting in a line with five

other people. How many ways are there
to arrange the six people?

 720 -- 720 is the factorial of 6
(abbreviated 6!)

 Factorial is defined as:
n! = n(n-1)(n-2)…(1)

 So, 6! = 6*5*4*3*2*1 = 720

Python Programming, 3/e 30

Accumulating Results:
Factorial
 How we could we write a program to do

this?
 Input number to take
factorial of, n
Compute factorial of n, fact
Output fact

Python Programming, 3/e 31

Accumulating Results:
Factorial
 How did we calculate 6!?
 6*5 = 30
 Take that 30, and 30 * 4 = 120
 Take that 120, and 120 * 3 = 360
 Take that 360, and 360 * 2 = 720
 Take that 720, and 720 * 1 = 720

Python Programming, 3/e 32

Accumulating Results:
Factorial
 What’s really going on?
 We’re doing repeated multiplications, and

we’re keeping track of the running product.
 This algorithm is known as an accumulator,

because we’re building up or accumulating
the answer in a variable, known as the
accumulator variable.

Python Programming, 3/e 33

Accumulating Results:
Factorial
 The general form of an accumulator

algorithm looks like this:
Initialize the accumulator variable

Loop until final result is reached
update the value of accumulator
variable

Python Programming, 3/e 34

Accumulating Results:
Factorial
 It looks like we’ll need a loop!
fact = 1

for factor in [6, 5, 4, 3, 2, 1]:
fact = fact * factor

 Let’s trace through it to verify that this
works!

Python Programming, 3/e 35

Accumulating Results:
Factorial
 Why did we need to initialize fact to 1?

There are a couple reasons…
 Each time through the loop, the previous

value of fact is used to calculate the next
value of fact. By doing the initialization,
you know fact will have a value the first
time through.

 If you use fact without assigning it a value,
what does Python do?

Python Programming, 3/e 36

Accumulating Results:
Factorial
 Since multiplication is associative and

commutative, we can rewrite our
program as:

fact = 1
for factor in [2, 3, 4, 5, 6]:
fact = fact * factor

 Great! But what if we want to find the
factorial of some other number??

Python Programming, 3/e 37

Accumulating Results:
Factorial
 What does range(n) return?

0, 1, 2, 3, …, n-1
 range has another optional parameter!

range(start, n) returns
start, start + 1, …, n-1

 But wait! There’s more!
range(start, n, step)
start, start+step, …, n-1

 list(<sequence>) to make a list

Python Programming, 3/e 38

Accumulating Results:
Factorial
 Let’s try some examples!
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(5,10))
[5, 6, 7, 8, 9]
>>> list(range(5,10,2))
[5, 7, 9]

Python Programming, 3/e 39

Accumulating Results:
Factorial
 Using this souped-up range statement,

we can do the range for our loop a
couple different ways.
 We can count up from 2 to n:

range(2, n+1)
(Why did we have to use n+1?)

 We can count down from n to 2:
range(n, 1, -1)

Python Programming, 3/e 40

Accumulating Results:
Factorial
 Our completed factorial program:
factorial.py
Program to compute the factorial of a number
Illustrates for loop with an accumulator

def main():
n = eval(input("Please enter a whole number: "))
fact = 1
for factor in range(n,1,-1):

fact = fact * factor
print("The factorial of", n, "is", fact)

main()

Python Programming, 3/e 41

The Limits of Int
 What is 100!?
>>> main()

Please enter a whole number: 100

The factorial of 100 is
93326215443944152681699238856266700490715968264
38162146859296389521759999322991560894146397615
65182862536979208272237582511852109168640000000
00000000000000000

 Wow! That’s a pretty big number!

Python Programming, 3/e 42

The Limits of Int
 Newer versions of Python can handle it, but…
Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import fact
>>> fact.main()
Please enter a whole number: 13
13
12
11
10
9
8
7
6
5
4
Traceback (innermost last):
File "<pyshell#1>", line 1, in ?
fact.main()

File "C:\PROGRA~1\PYTHON~1.2\fact.py", line 5, in main
fact=fact*factor

OverflowError: integer multiplication

Python Programming, 3/e 43

The Limits of Int
 What’s going on?

 While there are an infinite number of
integers, there is a finite range of ints that
can be represented.

 This range depends on the number of bits
a particular CPU uses to represent an
integer value.

Python Programming, 3/e 44

The Limits of Int
 Typical PCs use 32 bits or 64.
 That means there are 232 possible

values, centered at 0.
 This range then is –231 to 231-1. We

need to subtract one from the top end
to account for 0.

 But our 100! is much larger than this.
How does it work?

Python Programming, 3/e 45

Handling Large Numbers
 Does switching to float data types get

us around the limitations of ints?
 If we initialize the accumulator to 1.0,

we get
>>> main()

Please enter a whole number: 30

The factorial of 30 is 2.652528598121911e+32

 We no longer get an exact answer!

Python Programming, 3/e 46

Handling Large Numbers:
Long Int
 Very large and very small numbers are

expressed in scientific or exponential
notation.

 2.652528598121911e+32 means
2.652528598121911 * 1032

 Here the decimal needs to be moved right 32
decimal places to get the original number,
but there are only 16 digits, so 16 digits of
precision have been lost.

Python Programming, 3/e 47

Handling Large Numbers
 Floats are approximations
 Floats allow us to represent a larger

range of values, but with fixed
precision.

 Python has a solution, expanding ints!
 Python ints are not a fixed size and

expand to handle whatever value it
holds.

Python Programming, 3/e 48

Handling Large Numbers
 Newer versions of Python automatically

convert your ints to expanded form when
they grow so large as to overflow.

 We get indefinitely large values (e.g. 100!) at
the cost of speed and memory

	Python Programming:�An Introduction to�Computer Science
	Objectives
	Objectives (cont.)
	Numeric Data Types
	Numeric Data Types
	Numeric Data Types
	Numeric Data Types
	Numeric Data Types
	Numeric Data Types
	Numeric Data Types
	Numeric Data Types
	Type Conversions & Rounding
	Type Conversions & Rounding
	Type Conversion & Rounding
	Type Conversion & Rounding
	Type Conversions & Rounding
	Type Conversions & Rounding
	Type Conversions & Rounding
	Type Conversions & Rounding
	Using the Math Library
	Using the Math Library
	Using the Math Library
	Using the Math Library
	Using the Math Library
	Using the Math Library
	Using the Math Library
	Using the Math Library
	Using the Math Library
	Accumulating Results: Factorial
	Accumulating Results: Factorial
	Accumulating Results: Factorial
	Accumulating Results: Factorial
	Accumulating Results: Factorial
	Accumulating Results: Factorial
	Accumulating Results: Factorial
	Accumulating Results: Factorial
	Accumulating Results: Factorial
	Accumulating Results: Factorial
	Accumulating Results: Factorial
	Accumulating Results: Factorial
	The Limits of Int
	The Limits of Int
	The Limits of Int
	The Limits of Int
	Handling Large Numbers
	Handling Large Numbers: Long Int
	Handling Large Numbers
	Handling Large Numbers

