
Python Programming, 3/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 2
Writing Simple Programs

Objectives
 To know the steps in an orderly

software development process.
 To understand programs following the

input, process, output (IPO) pattern
and be able to modify them in simple
ways.

 To understand the rules for forming
valid Python identifiers and expressions.

Python Programming, 3/e 2

Python Programming, 3/e 3

Objectives
 To be able to understand and write

Python statements to output
information to the screen, assign values
to variables, get numeric information
entered from the keyboard, and
perform a counted loop

Python Programming, 3/e 4

The Software Development
Process
 The process of creating a program is

often broken down into stages
according to the information that is
produced in each phase.

Python Programming, 3/e 5

The Software Development
Process
 Analyze the Problem

Figure out exactly the problem to be
solved. Try to understand it as much as
possible.

Python Programming, 3/e 6

The Software Development
Process
 Determine Specifications

Describe exactly what your program will
do.
 Don’t worry about how the program will

work, but what it will do.
 Includes describing the inputs, outputs,

and how they relate to one another.

Python Programming, 3/e 7

The Software Development
Process
 Create a Design

 Formulate the overall structure of the
program.

 This is where the how of the program gets
worked out.

 Develop your own algorithm that meets
the specifications.

Python Programming, 3/e 8

The Software Development
Process
 Implement the Design

 Translate the design into a computer
language.

 In this course we will use Python.

Python Programming, 3/e 9

The Software Development
Process
 Test/Debug the Program

 Try out your program to see if it worked.
 If there are any errors (bugs), they need to

be located and fixed. This process is called
debugging.

 Your goal is to find errors, so try
everything that might “break” your
program!

Python Programming, 3/e 10

The Software Development
Process
 Maintain the Program

 Continue developing the program in
response to the needs of your users.

 In the real world, most programs are never
completely finished – they evolve over
time.

Python Programming, 3/e 11

Example Program:
Temperature Converter
 Analysis – the temperature is given in

Celsius, user wants it expressed in
degrees Fahrenheit.

 Specification
 Input – temperature in Celsius
 Output – temperature in Fahrenheit
 Output = 9/5(input) + 32

Python Programming, 3/e 12

Example Program:
Temperature Converter
 Design

 Input, Process, Output (IPO)
 Prompt the user for input (Celsius

temperature)
 Process it to convert it to Fahrenheit using

F = 9/5(C) + 32
 Output the result by displaying it on the

screen

Python Programming, 3/e 13

Example Program:
Temperature Converter
 Before we start coding, let’s write a

rough draft of the program in
pseudocode

 Pseudocode is precise English that
describes what a program does, step by
step.

 Using pseudocode, we can concentrate
on the algorithm rather than the
programming language.

Python Programming, 3/e 14

Example Program:
Temperature Converter
 Pseudocode:

 Input the temperature in degrees Celsius
(call it celsius)

 Calculate fahrenheit as (9/5)*celsius+32
 Output fahrenheit

 Now we need to convert this to Python!

Python Programming, 3/e 15

Example Program:
Temperature Converter
#convert.py
A program to convert Celsius temps to Fahrenheit
by: Susan Computewell

def main():
celsius = eval(input("What is the Celsius temperature? "))
fahrenheit = (9/5) * celsius + 32
print("The temperature is ",fahrenheit," degrees Fahrenheit.")

main()

Python Programming, 3/e 16

Example Program:
Temperature Converter
 Once we write a program, we should

test it!
>>>
What is the Celsius temperature? 0
The temperature is 32.0 degrees Fahrenheit.
>>> main()
What is the Celsius temperature? 100
The temperature is 212.0 degrees Fahrenheit.
>>> main()
What is the Celsius temperature? -40
The temperature is -40.0 degrees Fahrenheit.
>>>

Python Programming, 3/e 17

Elements of Programs
 Names

 Names are given to variables (celsius,
fahrenheit), modules (main, convert), etc.

 These names are called identifiers
 Every identifier must begin with a letter or

underscore (“_”), followed by any
sequence of letters, digits, or underscores.

 Identifiers are case sensitive.

Python Programming, 3/e 18

Elements of Programs
 These are all different, valid names

 X
 Celsius
 Spam
 spam
 spAm
 Spam_and_Eggs
 Spam_And_Eggs

Python Programming, 3/e 19

Elements of Programs
 Some identifiers are part of Python itself.

These identifiers are known as reserved
words (or keywords). This means they are
not available for you to use as a name for
a variable, etc. in your program.

 and, del, for, is, raise, assert, elif, in, print,
etc.

 For a complete list, see Table 2.1 (p. 32)

Python Programming, 3/e 20

Elements of Programs
 Expressions

 The fragments of code that produce or
calculate new data values are called
expressions.

 Literals are used to represent a specific
value, e.g. 3.9, 1, 1.0

 Simple identifiers can also be expressions.
 Also included are strings (textual data) and

string literals (like "Hello").

Python Programming, 3/e 21

Elements of Programs
>>> x = 5
>>> x
5
>>> print(x)
5
>>> print(spam)

Traceback (most recent call last):
File "<pyshell#15>", line 1, in -toplevel-

print spam
NameError: name 'spam' is not defined
>>>

 NameError is the error when you try to use a
variable without a value assigned to it.

Python Programming, 3/e 22

Elements of Programs
 Simpler expressions can be combined using

operators.
 +, -, *, /, **
 Spaces are irrelevant within an expression.
 The normal mathematical precedence

applies.
 ((x1 – x2) / 2*n) + (spam / k**3)

Python Programming, 3/e 23

Elements of Programs
 Output Statements

 print()
print(<expr>, <expr>, …, <expr>)

 A print statement can print any number of
expressions.

 Successive print statements will display on
separate lines.

 A bare print will print a blank line.

Python Programming, 3/e 24

Elements of Programs
print(3+4)

print(3, 4, 3+4)

print()

print(3, 4, end=" "),

print(3 + 4)

print("The answer is", 3+4)

7

3 4 7

3 4 7

The answer is 7

Python Programming, 3/e 25

Assignment Statements
 Simple Assignment
 <variable> = <expr>

variable is an identifier, expr is an
expression

 The expression on the RHS is evaluated
to produce a value which is then
associated with the variable named on
the LHS.

Python Programming, 3/e 26

Assignment Statements
 x = 3.9 * x * (1-x)

 fahrenheit = 9/5 * celsius + 32

 x = 5

Python Programming, 3/e 27

Assignment Statements
 Variables can be reassigned as many

times as you want!
>>> myVar = 0
>>> myVar
0
>>> myVar = 7
>>> myVar
7
>>> myVar = myVar + 1
>>> myVar
8
>>>

Python Programming, 3/e 28

Assignment Statements
 Variables are like a box we can put

values in.
 When a variable changes, the old value

is erased and a new one is written in.

Python Programming, 3/e 29

Assignment Statements
 Technically, this model of assignment is

simplistic for Python.
 Python doesn't overwrite these memory

locations (boxes).
 Assigning a variable is more like putting

a “sticky note” on a value and saying,
“this is x”.

Python Programming, 3/e 30

Assigning Input
 The purpose of an input statement is to get

input from the user and store it into a
variable.

 <variable> = eval(input(<prompt>))

 Here, eval is wrapped around the input
function.

Python Programming, 3/e 31

Assigning Input
 First the prompt is printed
 The input part waits for the user to enter a

value and press <enter>
 The expression that was entered is
evaluated to turn it from a string of
characters into a Python value (a number).

 The value is assigned to the variable.
 For string input:
<var> = input(<prompt>)

Assigning Input
 Beware: the eval function is very

powerful and potentially dangerous!
 When we evaluate user input, we allow

the user to enter a portion of our
program, which Python will then
evaluate.

Python Programming, 3/e 32

Assigning Input
 Someone who knows Python could

exploit this ability and enter malicious
instructions, e.g. capture private
information or delete files on the
computer.

 This is called a code injection attack,
because an attacker is injecting
malicious code into the running
program.

Python Programming, 3/e 33

Assigning Input
 When writing programs for your own

personal use, this is probably not much of an
issue.

 When the input is coming from untrusted
sources, like users on the Internet, the use of
eval could be disastrous.

 We will see some safer alternatives in the
next chapter.

Python Programming, 3/e 34

Python Programming, 3/e 35

Simultaneous Assignment
 Several values can be calculated at the

same time
 <var>, <var>, … = <expr>, <expr>, …

 Evaluate the expressions in the RHS and
assign them to the variables on the LHS

Python Programming, 3/e 36

Simultaneous Assignment
 sum, diff = x+y, x-y
 How could you use this to swap the

values for x and y?
 Why doesn’t this work?

x = y
y = x

 We could use a temporary variable…

Python Programming, 3/e 37

Simultaneous Assignment
 We can swap the values of two

variables quite easily in Python!
 x, y = y, x
>>> x = 3

>>> y = 4

>>> print x, y

3 4

>>> x, y = y, x

>>> print x, y

4 3

Python Programming, 3/e 38

Simultaneous Assignment
 We can use this same idea to input

multiple variables from a single input
statement!

 Use commas to separate the inputs
def spamneggs():

spam, eggs = eval(input("Enter # of slices of spam followed by # of eggs: "))
print ("You ordered", eggs, "eggs and", spam, "slices of spam. Yum!“)

>>> spamneggs()
Enter the number of slices of spam followed by the number of eggs: 3, 2
You ordered 2 eggs and 3 slices of spam. Yum!
>>>

Python Programming, 3/e 39

Definite Loops
 A definite loop executes a definite

number of times, i.e., at the time
Python starts the loop it knows exactly
how many iterations to do.

 for <var> in <sequence>:
<body>

 The beginning and end of the body are
indicated by indentation.

Python Programming, 3/e 40

Definite Loops
for <var> in <sequence>:
<body>

 The variable after the for is called the
loop index. It takes on each successive
value in sequence.

 Often, the sequence portion consists of
a list of values.
 A list is a sequence of expressions in

square brackets.

Python Programming, 3/e 41

Definite Loops
>>> for i in [0,1,2,3]:

print (i)

0
1
2
3
>>> for odd in [1, 3, 5, 7]:

print(odd*odd)

1
9
25
49

>>>

Python Programming, 3/e 42

Definite Loops
 In chaos.py, what did range(10) do?

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 range is a built-in Python function that
generates a sequence of numbers,
starting with 0.

 list is a built-in Python function that
turns the sequence into an explicit list

 The body of the loop executes 10 times.

Definite Loops
 for loops alter the

flow of program
execution, so they
are referred to as
control structures.

Python Programming, 3/e 43

Python Programming, 3/e 44

Example Program: Future
Value
 Analysis

 Money deposited in a bank account earns
interest.

 How much will the account be worth 10
years from now?

 Inputs: principal, interest rate
 Output: value of the investment in 10

years

Python Programming, 3/e 45

Example Program: Future
Value
 Specification

 User enters the initial amount to invest, the
principal

 User enters an annual percentage rate, the
interest

 The specifications can be represented like
this …

Python Programming, 3/e 46

Example Program: Future
Value
 Program Future Value
 Inputs

principal The amount of money being
invested, in dollars

apr The annual percentage rate
expressed as a decimal number.

 Output The value of the investment 10 years
in the future

 Relatonship Value after one year is given by
principal * (1 + apr). This needs to be done
10 times.

Python Programming, 3/e 47

Example Program: Future
Value
 Design
Print an introduction
Input the amount of the principal (principal)
Input the annual percentage rate (apr)
Repeat 10 times:

principal = principal * (1 + apr)
Output the value of principal

Python Programming, 3/e 48

Example Program: Future
Value
 Implementation

 Each line translates to one line of Python
(in this case)

 Print an introduction
print ("This program calculates the future")
print ("value of a 10-year investment.")

 Input the amount of the principal
principal = eval(input("Enter the initial principal: "))

Python Programming, 3/e 49

Example Program: Future
Value

 Input the annual percentage rate
apr = eval(input("Enter the annual interest rate: "))

 Repeat 10 times:
for i in range(10):

 Calculate principal = principal * (1 + apr)
principal = principal * (1 + apr)

 Output the value of the principal at the end
of 10 years
print ("The value in 10 years is:", principal)

Python Programming, 3/e 50

Example Program: Future
Value

futval.py
A program to compute the value of an investment
carried 10 years into the future

def main():
print("This program calculates the future value of a 10-year investment.")

principal = eval(input("Enter the initial principal: "))
apr = eval(input("Enter the annual interest rate: "))

for i in range(10):
principal = principal * (1 + apr)

print ("The value in 10 years is:", principal)

main()

Python Programming, 3/e 51

Example Program: Future
Value

>>> main()

This program calculates the future value of a 10-year investment.

Enter the initial principal: 100

Enter the annual interest rate: .03

The value in 10 years is: 134.391637934

>>> main()

This program calculates the future value of a 10-year investment.

Enter the initial principal: 100

Enter the annual interest rate: .10

The value in 10 years is: 259.37424601

	Python Programming:�An Introduction to�Computer Science
	Objectives
	Objectives
	The Software Development Process
	The Software Development Process
	The Software Development Process
	The Software Development Process
	The Software Development Process
	The Software Development Process
	The Software Development Process
	Example Program: Temperature Converter
	Example Program: Temperature Converter
	Example Program: Temperature Converter
	Example Program: Temperature Converter
	Example Program: Temperature Converter
	Example Program: Temperature Converter
	Elements of Programs
	Elements of Programs
	Elements of Programs
	Elements of Programs
	Elements of Programs
	Elements of Programs
	Elements of Programs
	Elements of Programs
	Assignment Statements
	Assignment Statements
	Assignment Statements
	Assignment Statements
	Assignment Statements
	Assigning Input
	Assigning Input
	Assigning Input
	Assigning Input
	Assigning Input
	Simultaneous Assignment
	Simultaneous Assignment
	Simultaneous Assignment
	Simultaneous Assignment	
	Definite Loops
	Definite Loops
	Definite Loops
	Definite Loops
	Definite Loops
	Example Program: Future Value
	Example Program: Future Value
	Example Program: Future Value
	Example Program: Future Value
	Example Program: Future Value
	Example Program: Future Value
	Example Program: Future Value
	Example Program: Future Value

