Physical Database
Design

(Oppel Chapter 8)

Slides courtesy of Andy Oppel

/

/ e

/

Physical Database Design Process

Transformation of logical database design to a physical
database design
Requires a profound shift in topics
e Significant knowledge of target DBMS required
e DBA often carries out at least part of physical database
design
e Performance concerns need to be addressed

e Goal is to produce (generate) SQL DDL to define the
database objects (tables, columns, indexes, views, etc.

/

// S
Skills / Knowledge Required

Understanding of the logical database design

Features of the target DBMS, esp. storage and indexing
DBMS tuning options and trade-offs

The operating system (OS) on which DBMS will run
The hardware on which the database server will run

Physical storage mechanisms available on the particular
platform

/ S

=

Inputs to Physical Design

Logical database design

Process models, including when and how often rows are
added, updated, deleted, retrieved

Process/Entity (CRUD) Matrix
Performance requirements
Target DBMS

Disk space constraints
Development schedule

Data retention requirements
Data volumes and growth rate

== -
~ Table Design Process

Each normalized relation becomes a table
e Common exceptions are supertypes and subtypes
Each attribute becomes a column in a table, specifying:
e Unique column name within the table

e Data type with length/precision/scale as required
e Whether values are required or not

e Check constraints
Primary Key constraint defined on unique identifier
Unique constraint defined on other candidate keys
Relationships become referential constraints

m Designmcess (2)

Physical storage specifications added:
e Tablespace assignment (file group in SQL Server)
e Consider index organized table (IOT) options
* Free space
e Data compression
e Clustering
Specify partitioning for very large tables
Alternatively, consider splitting very large tables
Set up any required replication
Add new tables and/or columns required for audit
Physical model can be a subset of the logical model

/

—
~ Physical Design Notes

Primary key constraint components must be defined as
NOT NULL

Unique constraint components can be NULL (subject to
DBMS restrictions)

Only one primary key constraint per table, but multiple
unique constraints are o.k.

For |:l relationships, implement with a referential
constraint and a unique constraint on the primary key in
one table that was placed as a foreign key in the other
table.

/

\\

~ Typical Physical Diagram Differences

Logical names shifted to all caps with underscores
replacing spaces or special characters

Data types displayed on diagram
NULL / NOT NULL displayed on diagram

Optionally, referential constraint names displayed on
diagram (in place of verb phrases on logical diagram)

Views may be shown

/
/ =

Implementing Supertypes and Subtypes

Three basic choices (subsequent slide on each):
e Implement as is (the “three table solution”)

e Push supertype down into each subtype (the “two table
solution”)

e Roll subtypes up into the supertype (the “one table
solution™)

Logical Model

Customer

Customer Number

Customer Type
Address

City

State

ZIP Code
Phone

Individual |Custo|ner

[Customm' Number (FK)

Date of Birth
Annual Houschold Income

Commercial Customer
Customer Number (FK)

Company Name
Tax Idenufication Number
Annual Gross Revenue

Company Type

Implement Subtypes As Is

CUSTOMER

CUSTOMER NUMBER

INDIVIDUAL C USTOMERQ

AL

CUSTOMER TYPE m
ADDRESS

CITH
STATE
ZIP CODE
PHONE

COMMERCIAL _CUSTOMER Q

(C USTOMER NUMBER (FK)

[
CUSTOMER NUMBER (FK)

DATE OF BIRTH

ANNUAL HOUSEHOLD INCOME

COMPANY NAME
TAX IDENTIFICATION NUMBER
ANNUAL GROSS REVENUE
COMPANY TYPE

Push Supertype Into Subtypes

INDIVIDUAL CUSTOMER

CUSTOMER NUMBER

ADDRESS
CITY
STATE
ZIP CODE
PHONE

DATE OF BIRTH
ANNUAL HOUSEHOLD INCOME

COMMERCIAL CUSTOMER

CUSTOMER NUMBER

ADDRESS
CITY
STATE
ZIP CODE
PHONE
COMPANY NAME

TAX IDENTIFICATION NUMBER
ANNUAL GROSS REVENUE
COMPANY TYPE

B A A e e M

" Roll Subtypes Into Supertype

CUSTOMER

CUSTOMER NUMBER

CUSTOMER TYPE
ADDRESS

CITY

STATE

ZIP CODE

PHONE

COMPANY NAME

TAX IDENTIFICATION NUMBER
ANNUAL GROSS REVENUE
COMPANY TYPE
DATE OF BIRTH

ANNUAL HOUSEHOLD INCOME

Table Naming Conventions

Table names based on entity names

Table names unique across entire organization
Consistency of singular vs. plural names

Do not use names like “table” or “file”

Best to use only uppercase letters and underscores
Best to use abbreviations only when necessary
Avoid limiting words such as WEST SALES

/

Column Naming Conventions

Column names based on attribute names

Column names unique within the table

Best to use only uppercase letters and underscores
Prefixing column names with entity names is controversial
Best to use abbreviations only when necessary

Foreign key column names same as primary key columns
except when role names are required

AN /
mt Naming Convention

Important because constraint names can appear in DBMS
error messages

Suggested convention: TNAME_TYPE CNAME where:
e TNAME is the name of the table
e TYPEis:

» PK for primary key constraints

» FK for foreign key constraints
» UQ for unique constraints

o CK for check constraints

e CNAME is the most important column name

/

mming Convention

Most DBMSs permit indexes for primary key / unique
constraints to be pre-defined, so you can specify name

Suggested convention: TNAME_ TYPE CNAME where:
e TNAME is the name of the table being indexed
e TYPE is the type of index:

» UX for unique indexes

 IX for non-unique indexes

e CNAME is the name of the most important column

/

mming Conventions

Must be unique among all tables, views and synonyms in
the same schema

Suggested convention:
e End names with a suffix such as VW
* Include the name of the most table
e Attempt to describe the purpose or contents of the view
e Add any abbreviations used to the standard list

18

/

Implement Business Rules as Constraints

NOT NULL constraints

Primary key constraints

Referential (foreign key) constraints
Unique constraints

Check constraints

Data types, length, precision/scale

Triggers

7 CFEE S

ding Indexes for Performance

* How a b-tree (balanced tree) index works:
http://mattfleming.com/node/ 192

* How a bit map index works

e Differences:

http://www.dba-
oracle.com/t_difference between_ btree_and bitmap_index.
htm

/

/
~Index Guidelines

Remember that RDBMSs automatically create indexes for
orimary key and unique constraints

ndexes on foreign key columns can dramatically improve
join performance (automatic in MySQL InnoDB)

f a query selects only columns from a single index, table
row fetches are not necessary

Consider indexes on columns that are frequently
referenced in WHERE clauses

Indexes on long VARCHAR columns are seldom useful
Indexes cannot be used to find NULL values

/

/
~Index Guidelines (2)

The larger the table, the less you want table scans

Indexes on frequently updated columns can be trouble
For relatively small tables, table scans are just fine

For tables with short rows that are most often accessed
using primary keys, consider an index organized table

Consider the performance consequences before defining
more than two or three indexes on a table

For B-tree, index selectivity needs to be high (0.8 — 1.0)

For low selectivity and relatively few values, consider a
bitmap index

/

m N

View Restrictions:

e For views referencing multiple tables,any insert, update or
delete can only reference columns from one table

e Inserts are impossible when required (NOT NULL)
columns are left out unless they have DEFAULT values

e Calculated and derived columns in views cannot be updated
e View access requires privileges (just as table access does)

e DBMSs vary somewhat in view support and restrictions

/

~—Advantages of Views

In some RDBMSs, view access performs better than table
access (stored procedures may be better still)

Views may be tailored to user department needs

Views can provide alternative representations
(transformations) of the data

Views insulate users from some table/column changes
Views simplify access by hiding complex joins and calculations

Views can omit rows and columns that users don’t need to
see (a good security tool)

Views can reestablish supertypes and subtypes that were no
implemented

