
(Oppel Chapter 8)

Slides courtesy of Andy Oppel

1

Physical Database Design Process

� Transformation of logical database design to a physical
database design

� Requires a profound shift in topics
� Significant knowledge of target DBMS required
� DBA often carries out at least part of physical database

design
� Performance concerns need to be addressed
� Goal is to produce (generate) SQL DDL to define the

database objects (tables, columns, indexes, views, etc.

Skills / Knowledge Required
� Understanding of the logical database design
� Features of the target DBMS, esp. storage and indexing
� DBMS tuning options and trade-offs
� The operating system (OS) on which DBMS will run
� The hardware on which the database server will run
� Physical storage mechanisms available on the particular

platform

Inputs to Physical Design
� Logical database design
� Process models, including when and how often rows are

added, updated, deleted, retrieved
� Process/Entity (CRUD) Matrix
� Performance requirements
� Target DBMS
� Disk space constraints
� Development schedule
� Data retention requirements
� Data volumes and growth rate

Table Design Process
1. Each normalized relation becomes a table

� Common exceptions are supertypes and subtypes
2. Each attribute becomes a column in a table, specifying:

� Unique column name within the table
� Data type with length/precision/scale as required
� Whether values are required or not
� Check constraints

� Primary Key constraint defined on unique identifier
� Unique constraint defined on other candidate keys
� Relationships become referential constraints

Physical Design Process (2)
6. Physical storage specifications added:

� Tablespace assignment (file group in SQL Server)
� Consider index organized table (IOT) options
� Free space
� Data compression
� Clustering

7. Specify partitioning for very large tables
8. Alternatively, consider splitting very large tables
9. Set up any required replication
10. Add new tables and/or columns required for audit
11. Physical model can be a subset of the logical model

Physical Design Notes
� Primary key constraint components must be defined as

NOT NULL
� Unique constraint components can be NULL (subject to

DBMS restrictions)
� Only one primary key constraint per table, but multiple

unique constraints are o.k.
� For 1:1 relationships, implement with a referential

constraint and a unique constraint on the primary key in
one table that was placed as a foreign key in the other
table.

Typical Physical Diagram Differences

� Logical names shifted to all caps with underscores
replacing spaces or special characters

� Data types displayed on diagram
� NULL / NOT NULL displayed on diagram
� Optionally, referential constraint names displayed on

diagram (in place of verb phrases on logical diagram)
� Views may be shown

Implementing Supertypes and Subtypes

� Three basic choices (subsequent slide on each):
� Implement as is (the “three table solution”)
� Push supertype down into each subtype (the “two table

solution”)
� Roll subtypes up into the supertype (the “one table

solution”)

Logical Model

Implement Subtypes As Is

Push Supertype Into Subtypes

Roll Subtypes Into Supertype

Table Naming Conventions
� Table names based on entity names
� Table names unique across entire organization
� Consistency of singular vs. plural names
� Do not use names like “table” or “file”
� Best to use only uppercase letters and underscores
� Best to use abbreviations only when necessary
� Avoid limiting words such as WEST_SALES

Column Naming Conventions
� Column names based on attribute names
� Column names unique within the table
� Best to use only uppercase letters and underscores
� Prefixing column names with entity names is controversial
� Best to use abbreviations only when necessary
� Foreign key column names same as primary key columns

except when role names are required

Constraint Naming Convention
� Important because constraint names can appear in DBMS

error messages
� Suggested convention: TNAME_TYPE_CNAME where:

� TNAME is the name of the table
� TYPE is:

� PK for primary key constraints
� FK for foreign key constraints
� UQ for unique constraints
� CK for check constraints

� CNAME is the most important column name

Index Naming Convention
� Most DBMSs permit indexes for primary key / unique

constraints to be pre-defined, so you can specify name
� Suggested convention: TNAME_TYPE_CNAME where:

� TNAME is the name of the table being indexed
� TYPE is the type of index:

� UX for unique indexes
� IX for non-unique indexes

� CNAME is the name of the most important column

View Naming Conventions
� Must be unique among all tables, views and synonyms in

the same schema
� Suggested convention:

� End names with a suffix such as _VW
� Include the name of the most table
� Attempt to describe the purpose or contents of the view
� Add any abbreviations used to the standard list

18

Implement Business Rules as Constraints
� NOT NULL constraints
� Primary key constraints
� Referential (foreign key) constraints
� Unique constraints
� Check constraints
� Data types, length, precision/scale
� Triggers

Adding Indexes for Performance
� How a b-tree (balanced tree) index works:

http://mattfleming.com/node/192

� How a bit map index works

� Differences:
http://www.dba-
oracle.com/t_difference_between_btree_and_bitmap_index.
htm

Index Guidelines
� Remember that RDBMSs automatically create indexes for

primary key and unique constraints
� Indexes on foreign key columns can dramatically improve

join performance (automatic in MySQL InnoDB)
� If a query selects only columns from a single index, table

row fetches are not necessary
� Consider indexes on columns that are frequently

referenced in WHERE clauses
� Indexes on long VARCHAR columns are seldom useful
� Indexes cannot be used to find NULL values

Index Guidelines (2)
� The larger the table, the less you want table scans
� Indexes on frequently updated columns can be trouble
� For relatively small tables, table scans are just fine
� For tables with short rows that are most often accessed

using primary keys, consider an index organized table
� Consider the performance consequences before defining

more than two or three indexes on a table
� For B-tree, index selectivity needs to be high (0.8 – 1.0)
� For low selectivity and relatively few values, consider a

bitmap index

Designing Views
� View Restrictions:

� For views referencing multiple tables, any insert, update or
delete can only reference columns from one table

� Inserts are impossible when required (NOT NULL)
columns are left out unless they have DEFAULT values

� Calculated and derived columns in views cannot be updated
� View access requires privileges (just as table access does)
� DBMSs vary somewhat in view support and restrictions

Advantages of Views
� In some RDBMSs, view access performs better than table

access (stored procedures may be better still)
� Views may be tailored to user department needs
� Views can provide alternative representations

(transformations) of the data
� Views insulate users from some table/column changes
� Views simplify access by hiding complex joins and calculations
� Views can omit rows and columns that users don’t need to

see (a good security tool)
� Views can reestablish supertypes and subtypes that were no

implemented

