
Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 1

Chapter 6

How to code
summary queries

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 2

Objectives
Applied
• Code summary queries that use aggregate functions, including

queries that use the WITH ROLLUP operator.

Knowledge
• Describe summary queries.
• Describe the differences between the HAVING clause and the

WHERE clause.
• Describe the use of the WITH ROLLUP operator.

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 3

The syntax of the aggregate functions
AVG([ALL|DISTINCT] expression)

SUM([ALL|DISTINCT] expression)

MIN([ALL|DISTINCT] expression)

MAX([ALL|DISTINCT] expression)

COUNT([ALL|DISTINCT] expression)

COUNT(*)

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 4

A summary query
SELECT COUNT(*) AS number_of_invoices,
 SUM(invoice_total – payment_total – credit_total)
 AS total_due
FROM invoices
WHERE invoice_total – payment_total – credit_total > 0

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 5

A summary query with COUNT(*), AVG, and SUM
SELECT 'After 1/1/2014' AS selection_date,
 COUNT(*) AS number_of_invoices,
 ROUND(AVG(invoice_total), 2) AS avg_invoice_amt,
 SUM(invoice_total) AS total_invoice_amt
FROM invoices
WHERE invoice_date > '2014-01-01'

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 6

A summary query with MIN and MAX
SELECT 'After 1/1/2014' AS selection_date,
 COUNT(*) AS number_of_invoices,
 MAX(invoice_total) AS highest_invoice_total,
 MIN(invoice_total) AS lowest_invoice_total
FROM invoices
WHERE invoice_date > '2014-01-01'

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 7

A summary query for non-numeric columns
SELECT MIN(vendor_name) AS first_vendor,
 MAX(vendor_name) AS last_vendor,
 COUNT(vendor_name) AS number_of_vendors
FROM vendors

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 8

A summary query with the DISTINCT keyword
SELECT COUNT(DISTINCT vendor_id) AS number_of_vendors,
 COUNT(vendor_id) AS number_of_invoices,
 ROUND(AVG(invoice_total), 2) AS avg_invoice_amt,
 SUM(invoice_total) AS total_invoice_amt
FROM invoices
WHERE invoice_date > '2014-01-01'

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 9

The syntax of a SELECT statement
with GROUP BY and HAVING clauses

SELECT select_list
FROM table_source
[WHERE search_condition]
[GROUP BY group_by_list]
[HAVING search_condition]
[ORDER BY order_by_list]

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 10

A summary query that calculates
the average invoice amount by vendor
SELECT vendor_id, ROUND(AVG(invoice_total), 2)
 AS average_invoice_amount
FROM invoices
GROUP BY vendor_id
HAVING AVG(invoice_total) > 2000
ORDER BY average_invoice_amount DESC

(8 rows)

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 11

A summary query that counts
the number of invoices by vendor
SELECT vendor_id, COUNT(*) AS invoice_qty
FROM invoices
GROUP BY vendor_id

(34 rows)

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 12

A summary query with a join
SELECT vendor_state, vendor_city, COUNT(*) AS invoice_qty,
 ROUND(AVG(invoice_total), 2) AS invoice_avg
FROM invoices JOIN vendors
 ON invoices.vendor_id = vendors.vendor_id
GROUP BY vendor_state, vendor_city

(20 rows)

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 13

A summary query that limits the groups
to those with two or more invoices
SELECT vendor_state, vendor_city, COUNT(*) AS invoice_qty,
 ROUND(AVG(invoice_total), 2) AS invoice_avg
FROM invoices JOIN vendors
 ON invoices.vendor_id = vendors.vendor_id
GROUP BY vendor_state, vendor_city
HAVING COUNT(*) >= 2

(12 rows)

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 14

A summary query with a search condition
in the HAVING clause
SELECT vendor_name,
 COUNT(*) AS invoice_qty,
 ROUND(AVG(invoice_total),2) AS invoice_avg
FROM vendors JOIN invoices
 ON vendors.vendor_id = invoices.vendor_id
GROUP BY vendor_name
HAVING AVG(invoice_total) > 500
ORDER BY invoice_qty DESC

(19 rows)

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 15

A summary query with a search condition
in the WHERE clause
SELECT vendor_name,
 COUNT(*) AS invoice_qty,
 ROUND(AVG(invoice_total),2) AS invoice_avg
FROM vendors JOIN invoices
 ON vendors.vendor_id = invoices.vendor_id
WHERE invoice_total > 500
GROUP BY vendor_name
ORDER BY invoice_qty DESC

(20 rows)

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 16

A summary query with a compound condition
in the HAVING clause
SELECT
 invoice_date,
 COUNT(*) AS invoice_qty,
 SUM(invoice_total) AS invoice_sum
FROM invoices
GROUP BY invoice_date
HAVING invoice_date BETWEEN '2014-05-01' AND '2014-05-31'
 AND COUNT(*) > 1
 AND SUM(invoice_total) > 100
ORDER BY invoice_date DESC

The result set

(7 rows)

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 17

The same query coded with a WHERE clause
SELECT
 invoice_date,
 COUNT(*) AS invoice_qty,
 SUM(invoice_total) AS invoice_sum
FROM invoices
WHERE invoice_date BETWEEN '2014-05-01' AND '2014-05-31'
GROUP BY invoice_date
HAVING COUNT(*) > 1
 AND SUM(invoice_total) > 100
ORDER BY invoice_date DESC

The same result set

(7 rows)

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 18

A summary query with a final summary row
SELECT vendor_id, COUNT(*) AS invoice_count,
 SUM(invoice_total) AS invoice_total
FROM invoices
GROUP BY vendor_id WITH ROLLUP

(35 rows)

Murach's MySQL, C6 © 2015, Mike Murach & Associates, Inc. Slide 19

A summary query with a summary row
for each grouping level
SELECT vendor_state, vendor_city, COUNT(*) AS qty_vendors
FROM vendors
WHERE vendor_state IN ('IA', 'NJ')
GROUP BY vendor_state ASC, vendor_city ASC WITH ROLLUP

