
POLVO - software for prototyping of low-fidelity

interfaces in agile development

Júnia Gonçalves, Caroline Santos

Computing Departament
Universidade Federal dos Vales do Jequitinhonha e Mucuri

Diamantina – Minas Gerais – Brazil

{junia.goncalves, carol.qs} AT gmail DOT com

Abstract. In the process of software development, the ease with which the user

can perform his/her tasks in the system - commonly called usability - is an

important requirement. The prototyping of user interfaces is one of the most

widely used techniques to specify this type of requirement. This paper presents

the importance and need to improve and increase the agility of prototyping

interfaces in agile development processes. The authors propose a software that

is able to build low-fidelity prototypes, document them and support user testing,

to aid the process of interface building in the Scrum methodology.

Keywords: Low-fidelity Prototype, Interaction Design, Agile Methods, Scrum

1 Introduction

 Traditional models of software development, such as Waterfall, are generally

focused on following the plan, instead of satisfying the customer. So when changes

are needed, either requirements or technology, this results in an increase in costs

proportional to the stage where the project is [6] - The more advanced the process, the

greater the increase in costs. Even the unified processes of software development

following the incremental-iterative1 model are not focused on customer satisfaction.

Thus, agile methods have gained importance in software development, rather than

traditional processes, since the former are better suited to dynamic environments and

tight deadlines, [6]. This adaptability exists because the agile methodologies are

focused on continued delivery of a functioning system, the reduction of the burden of

documentation on the development and frequent contact with the client, resulting in

improved response to changes [5]. Among the agile, Scrum stands out with its product

management practice.

1 According to Sommerville [17], the iterative-incremental models are those in which

the system requirements are identified and prioritized, followed by a series of

development stages, and each of these stages results in the delivery of a subset of

system functionalities.

2 Júnia Gonçalves, Caroline Santos

 For applications to stand out today, it is necessary that, for their

development, a stance toward the user be adopted, with interfaces that are usable and

easy to learn, because when they are not, more resources will have to be used in

training and supporting the user, and this creates dissatisfaction with the tasks to be

performed [1]. However, interaction design approaches are not clearly provided in

software development, either in traditional processes, or in agile methodologies;

therefore, the systems do not give support to usable form tasks [3]. Thus, it is

necessary that an attitude directed to the user and use be inserted during the procedure

in order to add greater value to the final product.
 In the process of software interface design, prototypes are designed to

facilitate communication between developers and stakeholders [12]. According to

Ambler [2], the conceptual modeling in agile methodologies happens in draft form,

drawn on white boards, sheets of paper or flip charts, as these sketches are enough for

the explanation of what should be modeled and then produced. Besides, Nielsen [10]

believes that the performance of processes focused on system usability can be

improved through computer support, stressing that it is desirable to develop an

application that supports the creation of mock-ups of user interface and user testing.

Thus, this study proposes to develop software for a low-fidelity prototyping, agile

practices aligned with the Scrum methodology, supporting documentation and

usability testing.
 This work consists of five sections, the first of which presents the problems

worked on here, as well as their motivations. Section number 2 presents concepts and

theories about the design of user interfaces, followed by section 3, which presents

concepts on software engineering and agile methods. The subsequent sections, 4 and

5, are related to the evolution of concepts and theories mentioned above, basing the

development methodology used and details of the methodology concerning the design

of the application, together with the documentation of its development. Finally, the

concluding remarks are presented.

2 Human-Computer Interaction and Interface Prototype

 Once systems began to be marketed on a large scale and distributed to many

users, also started the concern that users could interact with the system. It became

necessary to adapt these systems to the needs and goals of users, facilitating the use

and development of their work and leisure activities. In literature, there are three main

approaches for developing system interfaces, usability engineering, user-centered

design and usage-centered design. The first is a process directed to the ease of

learning and use of systems, providing them with a friendly interface. The second is

to change the focus of development, leaving the focus on technology, moving to focus

on the user, in which he/she is studied, included and takes part in testing. The last

process focuses on the use of the system, in which activities it should be conducted

and what the system should cancel, leaving the figure of the user aside [14].
 The User-Centered Design (UCD) is a philosophy that is based on the needs

and interests of users, emphasizing the creation of usable and understandable products

[11]. Thus, the UCD approach can be used to create various products, including

software. As Donald Norman introduced the concept of User-Centered Design, was

POLVO - software for prototyping of low-fidelity interfaces in agile development 3

also embedded the concept of Activity-Centered Design, in which tasks and user

behavior were studied for framing systems. But later, Norman concluded that the

model-driven tasks produced inadequate results [4]. Thus, Cooper, Reimann and

Cronin [4] suggested that not only the profile, the activities and environment of users

be investigated, but also their goals. The technology-focused organizations rarely

have a proper UCD process, if ever presented [4]. Even if the Activity-Centered

Design manages a system that can be modeled, this is just one increment, since it does

not provide solutions to differentiate the product on the market and does not satisfy

the user correctly. Thus, the Goal-Directed Design (GDD) is to be a link between the

research user with design, using ethnographic techniques, interviews with

stakeholders, market research, detailed models of users, scenario-based design and a

set principles and patterns of interaction, meeting the needs of users and

organizations.

2.1 Interface Prototype

 The prototyping of interfaces can be defined as a limited representation of a

design that enables users to interact and explore it, and its main idea is to create

something that resembles the final product and can be tested by end users, saving

resources [10]. In this work, prototypes will be understood as limited representations

and non-executable user interfaces, which can be manipulated in order to validate the

actual interfaces of the system under development. Prototypes can be classified into

high-fidelity prototypes and low-fidelity prototypes. The first type of prototype is one

that closely resembles the final product, being developed under a programming

language and sometimes executable. They are used to demonstrate a real image of the

system and evaluate patterns and style guides [14]. The low-fidelity prototypes are

those that have little resemblance to the final product, using simplistic means for their

representation, instead of metal and electronic displays. These prototypes are useful,

since they tend to be simple, cheap and rapidly produced. They can be quickly

modified, supporting the exploration of alternative designs. They are useful for

identifying market requirements, assess multiple design concepts, deal with issues on

layout of the screen [12], and, finally, are useful for exploring the possibilities of

navigation [14].
 For Snyder [16], paper prototyping is a technique that involves the creation

of low-fidelity prototypes on paper that can be manipulated by a facilitator that

simulates the behavior of the system to conduct usability tests. This technique

provides benefits in terms of skill development, ease of communication between

multidisciplinary teams and stakeholders, encourages creativity, does not require

technical skills, which allows end users to be involved in prototyping the interface,

enhancing the quality of the final product [5], though users might find it strange at

first [16].

4 Júnia Gonçalves, Caroline Santos

3 Agile Software Development

 Software Engineering consists of a set of activities that aim to create

software product - commonly called software process [17]. In the 90s, dozens of

developers joined together, sharing the dissatisfaction with the prevailing process of

software development - UP2 - and wrote the so-called Agile Manifesto, initiating a

series of agile methodologies. In the context of software engineering, agility reflects

the capacity to accommodate the necessary changes that originate during the process

of software development [13]. Thus, agile methods present a great response to the

changes, since following the plan and providing comprehensive documentation are

items of low priority, indicating the absence of a rigid structure, which leads to

creativity, self-manageable processes and increasing returns. Besides agility, agile

methodologies embody other values to their process, such as the creation of cohesive

teams, communication between the implementation teams, engineers, managers and

stakeholders, and the latter are considered part of the development team and add

greater value to products that are potentially deliverable to the customer.
 Scrum is a framework for agile development of complex products, within

which it is possible to employ various processes and techniques [15], one method to

manage the development of a product of any technology, including software [7]. The

devices available in Scrum are the Product Backlog, the Sprint Backlog, the

Burndown Release Delivery and the Sprint Burndown. The Product Backlog is a list

that prioritizes all that is needed in the product. The Sprint Backlog is a list of tasks to

turn the Product Backlog into a potentially shippable product. Both Burndown

Release Delivery and Sprint Burndown charts measure how much effort and time are

still needed. The former is directed to the Product Backlog and the second to Sprints.

Moreover, in Scrum, there are time-boxes, ie, events of fixed duration, which are the

Release Planning Meeting for Delivery and Sprint.

4 The Project

 The purpose of the software presented here is to develop a system of low-

fidelity prototyping, according to the story of the Scrum framework and tasks that

require a user interface and supporting documentation and usability testing. The

development was focused on construction of key features, with no effort at that time

to implement non-functional requirements such as security and performance, because

it is an early application in its evolutionary chain. However, the non-functional

requirement known as usability has been strongly sought and tested. In order to obtain

usability in the system, an approach that would integrate UCD and agile methods was

chosen, but there is no formal model for this, which has led several authors to apply

2 Unified Process is a methodology for developing iterative-incremental software,

which is characterized by extensive documentation through UML diagrams [17].

POLVO - software for prototyping of low-fidelity interfaces in agile development 5

effort in the integration of UCD with models of software development with agile

methodologies [8, 9, 18]. To make this integration difficult, there are still UCD

activities that are not effective in practice [19], making specific case studies to be

developed to test the compatibility of these UCD activities with agile methods [8].
 A model for such integration is suggested by Sy [18], which is the focus of

the agile team on a few features of the system at a time, which means that each

feature receives a more careful work, and can capture design flaws earlier, provide

changes and incorporate these adjustments. In addition, there must be different cycles

of design and implementation, although they may occur in parallel, in which

functionality is implemented with a basic interface as its design is made. So, the next

iteration, the final design is implemented. There should also be the so-called Cycle

Zero, which is the phase of gathering usability requirements.

4.1 Development Methodology

 Based on Sy's model [18], a similar methodology was used in this work,

consisting of a mix between Goal-Directed Design process and Scrum agile

methodology. The Zero Cycle is divided into three activities of requirement gathering

system based on the users' goals, according to the initial stages of Goal-Directed

Design. Subsequently, the Sprints take place in parallel with the design process and

prototyping of the interfaces, resulting in an interface refining activity through

usability testing and participatory design sessions. Finally, the final interface can be

implemented. The activities of the methodology are presented below and illustrated in

picture 1.
 The activities consist of Research: it is the literature review of the areas of

Software Engineering and Human-Computer Interface, and is presented and cited

throughout the text; Modeling: it is the creation of personas and goals based on

information obtained during the research; Requirement Definition: it is the analysis of

the personas and goals to generate the specification of the users' scenarios; Definition

of the Product Backlog: from scenarios, The Product Backlog is built on the

application, together with the story definition, its importance, demonstration, initial

estimates and essential UML diagrams; Definition of Sprint Backlog: The

development loop occurs in activities 5, 6 and 7, starting with the activity known as

Sprint Backlog Definition, when the stories are chosen and will compose the current

Sprint, which leads to a potentially shippable product until the entire Product Backlog

is implemented; Defining the Framework: activity that occurs parallel with Execution

of Sprint, in which occurs prototyping and creating the visual identity of the

application according to the stories present in the current Sprint; Sprint's

implementation: it is the implementation of selected stories in the activity known as

Setting the Sprint Backlog, with the development of an intermediate interface that will

be replaced later; Refinement: it happens after the loop of activities 5, 6 and 7,

consisting of performing usability testing, participatory design sessions with users of

focus and redesign of user interfaces; Special Sprint: it consists of a Sprint in which

end-user interfaces are implemented, replacing the interfaces developed in the

intermediate activity of Sprint Implementation. This activity takes place parallel with

the activity Development Support. Development Support: it consists in monitoring the

6 Júnia Gonçalves, Caroline Santos

implementation of end-user interfaces if any development challenges are identified

and lack some adjustment.

Fig. 1. Development Methodology: Mix between Goal-Directed Design and Scrum

4.2 POLVO and its agile development directed by goals

 This is the breakdown of major activities conducted during the development

of the system:

4.2.1 System Models

 The system was modeled after the creation of six personas, models that focus

on users of the system focusing on characteristics and behavior [4], representing its

primary users, secondary, additional, served and negative. The primary personas are

those that are directly related to the functionality of the system, while the secondary

personas are satisfied with the features presented, in spite of having special needs.

The additional persona is one that is not primary or secondary, whose needs are a

combination of the needs of primary and secondary users, and is completely satisfied

with the functionality of the system. The served persona is the one who does not use

the product, but is affected by its use, while the negative persona is one whose needs

are not supported by the product [4]. The personas were described according to their

context, and all the personas were, on some level, set in the context of software

development with Scrum. They were also described as for the activities they carry

out, their attitudes, skills, motivations and goals. Moreover, they were mapped as to

their experiences and knowledge on technology, Human-Computer Interface,

participation in the implementation of applications and interest in the prototyping

process in order to show the level and the difference between the personas.

POLVO - software for prototyping of low-fidelity interfaces in agile development 7

4.2.2 Requirement Definition, Product Backlog and Sprints

 Based on established personas, their scenarios were developed, which consist

of how the persona uses the product in its day-to-day activities in order to achieve its

goals [4], and these scenarios are the system requirements, added to the device

Product Backlog as part of user stories. Thus, the stories are constructed based on user

scenarios, divided into six categories: Scrum, Prototyping, Usability Testing, Security

and Documentation, with the first three being the highest priorities. According to the

device Product Backlog, the software must support an authentication system and

different access control to "designer" and "user", and only the "user" can perform

usability tests, preventing the "designer" from performing tests and generating

erroneous results, but the designer can still view the navigation between the

prototypes. The "User" can also create interface prototypes, but the user cannot view

or modify prototypes that are not his property. Also, it should support product

management, user stories, tasks and Sprints and construction of prototypes based on

the tasks to be performed in parallel. Usability testing should be performed by Sprint

since the prototypes are interconnected through links or actions, and must mark what

prototype is the Sprint start screen. It is important to note that the prototypes are built

as interactive and non-executable, that is, are navigable, but do not process data,

similar to the prototypes on paper. The present application versioning allows

alternative prototypes to be created and stored, providing a documentation of the

construction of interfaces, just like the notes come from the documentation generated

by the designer during the usability test. Finally, the user can add "designer" or "user"

to his product in order to generate collaborative development processes, although the

change control is left to the users.
 The Sprints were defined according to the importance of the user story in the

Product Backlog, followed by the duration of the stories already chosen. Thus, three

sprints were defined, the first forming the core functionality of the application,

construction of prototypes, Products, Stories and Tasks and Sprints, the second

consisting of Versioning features, Notes and Execution of Usability Testing, and

finally the last Sprint is made up of the features of Result of Usability Testing, System

Authentication and Access Control and Adding Designer / User.

4.2.3 Prototyping, Usability Testing and Special Sprint

 Alongside the implementation of Sprint, there was the process of low-fidelity

prototyping on paper in the application. Several alternative prototypes were built until

one was chosen based on a Heuristic Evaluation, out of which the most usable

prototype would be built on interactive paper, to be used in usability testing with users

on focus. Thus, the prototypes were built on paper according to the stories

implemented in the Sprint, and the interactive prototype was finally built. In addition,

the visual identity of the application was also designed, being partially embedded in

the interactive paper prototype and fully incorporated into the final interface

implemented.
 At the end of the loop in the activities of Sprint Definition, Framework

Definition and Implementation of Sprint, the activity known as Refinement of the user

interface started, through sessions of usability testing conducted with a small number

8 Júnia Gonçalves, Caroline Santos

of users on focus (from 1 to 5), who were invited to develop a product that consisted

of a website for lyrics, in which these were published collaboratively by its users.

This product was named "Lyrics", with four user stories, four tasks, two Sprints and

two interface prototypes. The tasks of the usability testing focused on product, user

stories, tasks and Sprints

and adding other users. Participants were free to create / prototype interface as they

wished. Usability testing consisted of an initial questionnaire of adherence to the

focus group, the tasks to be performed on prototype interactive paper and a final

questionnaire on the impressions of the software, as well as being invited to "think

aloud". Based on the responses of the final questionnaire, participants were invited to

a meeting of Participatory Design in which they built their solutions and / or ideas on

interactive prototype paper, using simple tools such as pen and scissors. The solution

was built and tested if there were some related problem detected during testing,

whereas the ideas, concepts and opinions about the visual identity were not

incorporated into the prototype. The biggest problems were the creation of user stories

and their allocation to Sprint and adding designer / user.

Fig. 2. Intermediate interface

 After the sessions of Usability Testing and Participatory Design and redesign

based on these sessions, the interactive paper prototype was implemented along with

its previously designed visual identity, featuring Sprint Special. During the

implementation of the final interface user, development

not requiring design review.

5 Conclusions

 The prototyping of user interfaces is perceived in various software

development methodologies, since it presents a better way to express the req

Júnia Gonçalves, Caroline Santos

focus (from 1 to 5), who were invited to develop a product that consisted

of a website for lyrics, in which these were published collaboratively by its users.

This product was named "Lyrics", with four user stories, four tasks, two Sprints and

e prototypes. The tasks of the usability testing focused on product, user

stories, tasks and Sprints management, prototype building, versioning, annotations

and adding other users. Participants were free to create / prototype interface as they

ility testing consisted of an initial questionnaire of adherence to the

focus group, the tasks to be performed on prototype interactive paper and a final

questionnaire on the impressions of the software, as well as being invited to "think

the responses of the final questionnaire, participants were invited to

a meeting of Participatory Design in which they built their solutions and / or ideas on

interactive prototype paper, using simple tools such as pen and scissors. The solution

and tested if there were some related problem detected during testing,

whereas the ideas, concepts and opinions about the visual identity were not

incorporated into the prototype. The biggest problems were the creation of user stories

to Sprint and adding designer / user.

Intermediate interface (a), interactive paper prototyping (b) and real final interface (c).

After the sessions of Usability Testing and Participatory Design and redesign

based on these sessions, the interactive paper prototype was implemented along with

its previously designed visual identity, featuring Sprint Special. During the

f the final interface user, development challenges were not detected,

not requiring design review.

The prototyping of user interfaces is perceived in various software

development methodologies, since it presents a better way to express the requirements

focus (from 1 to 5), who were invited to develop a product that consisted

of a website for lyrics, in which these were published collaboratively by its users.

This product was named "Lyrics", with four user stories, four tasks, two Sprints and

e prototypes. The tasks of the usability testing focused on product, user

, prototype building, versioning, annotations

and adding other users. Participants were free to create / prototype interface as they

ility testing consisted of an initial questionnaire of adherence to the

focus group, the tasks to be performed on prototype interactive paper and a final

questionnaire on the impressions of the software, as well as being invited to "think

the responses of the final questionnaire, participants were invited to

a meeting of Participatory Design in which they built their solutions and / or ideas on

interactive prototype paper, using simple tools such as pen and scissors. The solution

and tested if there were some related problem detected during testing,

whereas the ideas, concepts and opinions about the visual identity were not

incorporated into the prototype. The biggest problems were the creation of user stories

(c).

After the sessions of Usability Testing and Participatory Design and redesign

based on these sessions, the interactive paper prototype was implemented along with

its previously designed visual identity, featuring Sprint Special. During the

were not detected,

The prototyping of user interfaces is perceived in various software

uirements

POLVO - software for prototyping of low-fidelity interfaces in agile development 9

of the user interface, instead of diagrams and textual descriptions [17]. There is also a

need for these prototyped interfaces to be tested and documented. Because of that, the

software "POLVO" was proposed, which brings such features. Possibly, the use of

"POLVO" will bring benefits to software developers, such as increased agility in the

development of user interface prototypes, ease of usability testing application with

interactive prototypes, carrying out participatory design sessions and documentation

of prototypes.
 Although the tool has been developed, it needs to be evolved, adding other

non-functional requirements such as enhanced security, performance, reliability and

availability. Moreover, its functionalities can be expanded to include all of the Scrum

management added to its current capabilities. The construction of such software has

emerged from studies on agile development and prototyping of interfaces. For

evaluation of its features, the use of the software by a team of developers would be

required. Thus, within the proposed evolution of the software "POLVO", there can

also be case studies focusing on the integration of the agile process Goal-Directed

Design and Scrum and adaptations to the current model used.

6 References

[1] S. Ambler. (2005-2006). The Agile Unified Process (AUP) [Online]. Available:

http://www.ambysoft.com/unifiedprocess/agileUP.html.

[2] S. Ambler. "User Interface Design Tips, Techniques, and Principles", Ambysoft.

[3] S. Blomkvist. "User-Centred Design and Agile Development of IT Systems" M.S.

thesis, Departament of Information Technology, Uppsala University, Uppsala,

Sweden, 2006.

[4] A. Cooper et al. About Face 3: The Essencials of Interaction Desgin. Indianapolis:

Wiley Publishing Inc., 2007.

[5] J. Gullisken et al. "Key Principles for User Centred Systems Design", Behaviour

and Information Tecnology, vol. 22, no. 6, 396-409, Nov-Dec. 2003.

[6] J. Highsmith, A. Cockburn. "Agile Software Development: The Business of

Innovation", IEEE Computer, vol 39, no. 9, 120-127, Sep. 2001.

[7] A. Koch. "Agile Software development: Evaluating Methods for your

Organization". Norwood: Artech House, 2005.

[8] P. McInerney, F. Maurer. "UCD in Agile Projects: Dream Team or Odd Couple?",

Interactions, vol. 12, no. 6, 19-23, Nov-Dec. 2005.

[9] T. Memmel et al. "Agile Human-Centered Software Engineering" in People and

Computer XXI HCI, Beijing, China, 2007.

[10] J. Nielsen. Usability Engineering. Boston: Academic Press, 1993.

[11] D. Norman. The Design of Everyday Things. New York: Basic Books, 1988.

[12] J. Preece et al. Interaction Design:Beyond Human-Computer Interaction, 2th ed.

Indianapolis: Wiley Publishing Inc., 2007.

[13] R. Pressman. "Software Engineering: A Practitioner's Approach", 6th ed. New

York: McGraw-Hill Science/Engineering/Math, 2004.

[14] C. Rosemberg et al. "Elicitação de Requisitos e Design Participativo através de

Protótipos de baixa Fidelidade - um Estudo de Caso" in Congresso Tecnológico

InfoBrasil, Fortaleza, Brazil, 2008.

10 Júnia Gonçalves, Caroline Santos

[15] K. Schwaber. "Scrum Guide". Seattle: Scrum Alliance, 2009.

[16] C. Snyder. "Paper Prototyping: The fast and easy way to design and redefine user

interfaces". San Francisco: Elsevier, 2003.

[17] I. Sommerville. "Software Engineering", 6th ed. Addison-Weasley, 2000.

[18] D. Sy. "Adapting Usability Investigations for Agile User-Centered Design" in

Journal of Usability Studies, Canada, 2007, 112-132.

[19] K. Vredenburg et al. "A Survey of User-Centered Design Practice" in Computer-

Human Interaction 2002, Minnesota, USA, 2002.

