
Page 1 of 9

Severance Chapter 14 Coding Assignment

General Instructions
My expectations for your work on coding assignment exercises will grow as we progress
through the course. In addition to applying any new programming techniques that have
been covered in the current chapter, I will be expecting you to follow all of the good
programming practices that we have adopted in the preceding weeks. Here is a quick
summary of good practices that we have covered so far:

• Include a single-line comment with name of program file.
• Include a single-line comment that describes the intent of the program.
• Place your highest-level code in a function named main.
• Your code should be factored such that there is a function in your program for

each part of the problem.
• Each function should contain code relating to the same thing – it should have

high cohesion.
• Functions should know as little as possible about the workings of other functions

– they should have low coupling.
• Include a final line of code in the program that executes the main function.
• Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor.

For example, place two blank lines between the code making up a function and
the code surrounding that function.

• Output printed by the program (both prompts and results) should be polite and
descriptive.

• Choose names for your variables that are properly descriptive.
• Choose names for your functions that are properly descriptive.
• Close all files before the conclusion of the program.
• Model your solution after the code that I demonstrate in the tutorial videos.
• Remember to test your program thoroughly before submitting your work.
• Your code must pass all relevant test cases. Make sure that it passes tests at the

boundaries created by if, else, and elif conditions in your program (boundary
value tests).

Page 2 of 9

Assignment Overview
The goal of this assignment is to demonstrate skills needed to design, code, and test
custom Python classes. To do this, we revisit the solution to one of the exercises that
was part of the Zelle Chapter 11 coding assignment:

 country_population_lists.py (see starter files)

In that exercise, we used a tuple-based data structure to hold the values for each
country/population data fact. In this assignment, we will be working with the same data
and producing similar output. The difference will be that we will use instances of a
custom Python class to hold values for each country/population data fact instead of
using a tuple.

In this assignment, we will create two successive versions of a custom Python class
named Country that holds Country/Population data facts.

First, we will create a basic version of the Country class that does not contain any getter
or setter capabilities. Then, we will demonstrate the use of this basic version of Country
using a revised version of the country_population_lists program that we created in
earlier in the semester.

Next, we will create an evolved version of the Country class that includes both getter or
setter capabilities. Then, we will demonstrate the use of this evolved version of Country
using a further revised version of the country_population_lists program that we created
in earlier in the semester.

There are 4 exercises that make up this coding assignment:

1. Create the basic version of the Country class.
2. Create country_population_lists_using_basic_class program to demonstrate the

use of the basic version of the Country class (see starter files).
3. Create the evolved version of the Country class.
4. Create country_population_lists_using_evolved_class program to demonstrate

the use of the evolved version of the Country class (see Exercise 2).

This assignment has a starter files zip file that contains the following:

• country_pop_data.txt
• broken_country_pop_data.txt
• country_population_lists.py

Page 3 of 9

Exercise 1
Create a Python module file named my_basic_countries.py. This module should contain
the following:

1. A class named Country that contains the basic implementation of the class that
holds Country/Population data facts.

2. A main() function that contains unit test cases for the Country class.

This basic version of the Country class should NOT contain explicit getter or setter
features. When doing this part of the assignment, follow the approach that I
demonstrated in the Part 1 tutorial video.

When this program is run directly (rather than having been imported), the console
session should contain the unit testing output and should look like this:

Unit testing output follows...

Test 1: Test Constructor
Passed

Test 2: Test setting name
Passed

Test 3: Test setting population
Passed

Test 4: Test __str__ Method
Passed

Page 4 of 9

Exercise 2
Create a program named country_population_lists_using_basic_class by copying the
country_population_lists.py program included in the starter files and modifying the code
to fit the specifications for this exercise. When coding and testing this program, follow
the approach that I take in the Part 2 tutorial video. The changes that you make to the
starter file should include:

• Change the program name.
• Import the proper version of the Country class.
• Use instances of the Country class to hold Country/Population data facts instead

of using tuples.
• Change the names of variables and parameters to eliminate references to the

word tuple.
• Change the names of functions to eliminate references to the word tuple.
• Add code that creates a third listing in the output in descending order of

population with the title DESCENDING POPULATION ORDER.

When testing, use the country_pop_data.txt file included in the starter files as your
input data file.

When testing, please check that the unit test output from the my_basic_countries.py
module is NOT printed in the test output for this program.

When this program is run, the console session should look like this:

Please enter input file name: country_pop_data.txt

COUNTRY NAME ORDER
Bangladesh 165435000
Brazil 209772000
China 1394860000
India 1338820000
Indonesia 265015300
Japan 126440000
Nigeria 193392517
Pakistan 202477000
Russia 146877088
USA 328077000

POPULATION ORDER
Japan 126440000
Russia 146877088
Bangladesh 165435000
Nigeria 193392517
Pakistan 202477000
Brazil 209772000
Indonesia 265015300

Page 5 of 9

USA 328077000
India 1338820000
China 1394860000

DESCENDING POPULATION ORDER
China 1394860000
India 1338820000
USA 328077000
Indonesia 265015300
Brazil 209772000
Pakistan 202477000
Nigeria 193392517
Bangladesh 165435000
Russia 146877088
Japan 126440000

Page 6 of 9

Exercise 3
Create a Python module file named my_evolved_countries.py by copying the module
created in Exercise 1 and making changes. This module should contain the following:

1. A class named Country that contains the evolved implementation of the class
that holds Country/Population facts.

2. A main() function that contains unit test cases for the Country class.

This evolved version of the Country class SHOULD INCLUDE explicit getter and setter
features implemented using the @property decorator. When doing this part of the
assignment, follow the approach that I demonstrated in the Part 3 tutorial video.

When this program is run directly (rather than having been imported), the console
session should contain the unit testing output and should look like this:

Unit testing output follows...

Test 1: Test Constructor
Passed

Test 2: Test setting name
Passed

Test 3: Test setting population
Passed

Test 4: Test __str__ Method
Passed

Test 5: Test Constructor being passed an empty name string
Passed

Test 6: Test Constructor being passed a population value < 0
Passed

Test 7: Test Constructor being passed a population value > 2
billion
Passed

Page 7 of 9

Exercise 4
Create a program named country_population_lists_using_evolved_class by copying the
country_population_using_basic_class program created in exercise 2. When coding and
testing this program, follow the approach that I take in the Part 4 tutorial video. The
changes that you make to the original program should include:

• Change the import statement such that the Country class is now imported from
the my_evolved_countries.py module that you created in Exercise 3.

• No further changes should be required!

As the first part of your testing, use the broken_country_pop_data.txt file included in
the starter files as your input data file. The program should be interrupted by an
AttributeError exception and the output should show the appropriate error message
instead of normal listing output.

As the second part of your testing, use the country_pop_data.txt file included in the
starter files as your input data file. The program should run to normal completion and
the output should show normal listings.

When testing, please check that the unit test output from the my_evolved _countries.py
module is NOT printed in the test output for this program.

When this program is run, the console sessions should look like this:

Please enter input file name: broken_country_pop_data.txt
Traceback (most recent call last):

(many lines from Python traceback omitted here…)

AttributeError: The population attribute may not be set to a
value < 0 or > 2 billion.

Please enter input file name: country_pop_data.txt

COUNTRY NAME ORDER
Bangladesh 165435000
Brazil 209772000
China 1394860000
India 1338820000
Indonesia 265015300
Japan 126440000
Nigeria 193392517
Pakistan 202477000
Russia 146877088
USA 328077000

Page 8 of 9

POPULATION ORDER
Japan 126440000
Russia 146877088
Bangladesh 165435000
Nigeria 193392517
Pakistan 202477000
Brazil 209772000
Indonesia 265015300
USA 328077000
India 1338820000
China 1394860000

DESCENDING POPULATION ORDER
China 1394860000
India 1338820000
USA 328077000
Indonesia 265015300
Brazil 209772000
Pakistan 202477000
Nigeria 193392517
Bangladesh 165435000
Russia 146877088
Japan 126440000

Page 9 of 9

Tools
Use PyCharm to create and test both python programs.

Submission Method
Follow the process that I demonstrated in the tutorial video on submitting your work.
This involves:

• Locating the properly named directory associated with your project in the file
system.

• Compressing that directory into a single .ZIP file using a utility program.
• Submitting the properly named zip file to the submission activity for this

assignment.

File and Directory Naming
Please name your Python program files as instructed in each exercise. Please use the
following naming scheme for naming your project:

 YourLastName_YourFirstName_exercises_severance_chapter_14

When you have compressed your project directory into a .ZIP file, it should have the
following name structure:

 YourLastName_YourFirstName_exercises_severance_chapter_14.zip

Due By
Please submit this assignment by the date and time shown in the Weekly Schedule.

