
Python Programming, 2/e 1

Python Programing:
An Introduction to
Computer Science

Chapter 11
Data Collections

Python Programming, 2/e 2

Objectives
n To understand the use of lists (arrays)

to represent a collection of related data.
n To be familiar with the functions and

methods available for manipulating
Python lists.

n To be able to write programs that use
lists to manage a collection of
information.

Python Programming, 2/e 3

Objectives
n To be able to write programs that use

lists and classes to structure complex
data.

n To understand the use of Python
dictionaries for storing nonsequential
collections.

Python Programming, 2/e 4

Example Problem:
Simple Statistics
n Many programs deal with large

collections of similar information.
n Words in a document
n Students in a course
n Data from an experiment
n Customers of a business
n Graphics objects drawn on the screen
n Cards in a deck

Python Programming, 2/e 5

Sample Problem:
Simple Statistics
Let’s review some code we wrote in chapter 8:

average4.py
A program to average a set of numbers
Illustrates sentinel loop using empty string as sentinel

def main():
sum = 0.0
count = 0
xStr = input("Enter a number (<Enter> to quit) >> ")
while xStr != "":

x = eval(xStr)
sum = sum + x
count = count + 1
xStr = input("Enter a number (<Enter> to quit) >> ")

print("\nThe average of the numbers is", sum / count)

main()

Python Programming, 2/e 6

Sample Problem:
Simple Statistics
n This program allows the user to enter a

sequence of numbers, but the program
itself doesn’t keep track of the numbers
that were entered – it only keeps a
running total.

n Suppose we want to extend the program
to compute not only the mean, but also
the median and standard deviation.

Python Programming, 2/e 7

Sample Problem:
Simple Statistics
n The median is the data value that splits

the data into equal-sized parts.
n For the data 2, 4, 6, 9, 13, the median

is 6, since there are two values greater
than 6 and two values that are smaller.

n One way to determine the median is to
store all the numbers, sort them, and
identify the middle value.

Python Programming, 2/e 8

Sample Problem:
Simple Statistics
n The standard deviation is a measure of how

spread out the data is relative to the mean.
n If the data is tightly clustered around the

mean, then the standard deviation is small. If
the data is more spread out, the standard
deviation is larger.

n The standard deviation is a yardstick to
measure/express how exceptional the data is.

Python Programming, 2/e 9

Sample Problem:
Simple Statistics
n The standard deviation is

n Here is the mean, represents the ith
data value and n is the number of data
values.

n The expression is the square of the
“deviation” of an individual item from the
mean.

()2

1
ix x

s
n
-

=
-

å
x ix

()2ix x-

Python Programming, 2/e 10

Sample Problem:
Simple Statistics
n The numerator is the sum of these

squared “deviations” across all the data.
n Suppose our data was 2, 4, 6, 9, and

13.
n The mean is 6.8
n The numerator of the standard deviation is

() () () () ()2 2 2 2 26.8 2 6.8 4 6.8 6 6.8 9 6.8 13 149.6

149.6 37.4 6.11
5 1

s

- + - + - + - + - =

= = =
-

Python Programming, 2/e 11

Sample Problem:
Simple Statistics
n As you can see, calculating the standard

deviation not only requires the mean
(which can’t be calculated until all the
data is entered), but also each
individual data element!

n We need some way to remember these
values as they are entered.

Python Programming, 2/e 12

Applying Lists
n We need a way to store and manipulate

an entire collection of numbers.
n We can’t just use a bunch of variables,

because we don’t know many numbers
there will be.

n What do we need? Some way of
combining an entire collection of values
into one object.

Python Programming, 2/e 13

Lists and Arrays
n Python lists are ordered sequences of items.

For instance, a sequence of n numbers might
be called S:
S = s0, s1, s2, s3, …, sn-1

n Specific values in the sequence can be referenced
using subscripts.

n By using numbers as subscripts, mathematicians can
succinctly summarize computations over items in a
sequence using subscript variables. 1

0

n

i
i
s

-

=
å

Python Programming, 2/e 14

Lists and Arrays
n Suppose the sequence is stored in a

variable s. We could write a loop to
calculate the sum of the items in the
sequence like this:
sum = 0
for i in range(n):

sum = sum + s[i]

n Almost all computer languages have a
sequence structure like this, sometimes
called an array.

Python Programming, 2/e 15

Lists and Arrays
n A list or array is a sequence of items where

the entire sequence is referred to by a single
name (i.e. s) and individual items can be
selected by indexing (i.e. s[i]).

n In other programming languages, arrays are
generally a fixed size, meaning that when you
create the array, you have to specify how
many items it can hold.

n Arrays are generally also homogeneous,
meaning they can hold only one data type.

Python Programming, 2/e 16

Lists and Arrays
n Python lists are dynamic. They can

grow and shrink on demand.
n Python lists are also heterogeneous, a

single list can hold arbitrary data types.
n Python lists are mutable sequences of

arbitrary objects.

Python Programming, 2/e 17

List Operations
Operator Meaning

<seq> + <seq> Concatenation
<seq> * <int-expr> Repetition

<seq>[] Indexing
len(<seq>) Length
<seq>[:] Slicing

for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)

Python Programming, 2/e 18

List Operations
n Except for the membership check,

we’ve used these operations before on
strings.

n The membership operation can be used
to see if a certain value appears
anywhere in a sequence.
>>> lst = [1,2,3,4]
>>> 3 in lst
True

Python Programming, 2/e 19

List Operations
n The summing example from earlier can be

written like this:
sum = 0
for x in s:

sum = sum + x

n Unlike strings, lists are mutable:
>>> lst = [1,2,3,4]
>>> lst[3]
4
>>> lst[3] = "Hello“
>>> lst
[1, 2, 3, 'Hello']
>>> lst[2] = 7
>>> lst
[1, 2, 7, 'Hello']

Python Programming, 2/e 20

List Operations
n A list of identical items can be created

using the repetition operator. This
command produces a list containing 50
zeroes:
zeroes = [0] * 50

Python Programming, 2/e 21

List Operations
n Lists are often built up one piece at a

time using append.
nums = []
x = eval(input('Enter a number: '))
while x >= 0:

nums.append(x)
x = eval(input('Enter a number: '))

n Here, nums is being used as an
accumulator, starting out empty, and
each time through the loop a new value
is tacked on.

Python Programming, 2/e 22

List Operations
Method Meaning

<list>.append(x) Add element x to end of list.

<list>.sort() Sort (order) the list. A comparison function may be passed as a
parameter.

<list>.reverse() Reverse the list.

<list>.index(x) Returns index of first occurrence of x.

<list>.insert(i, x) Insert x into list at index i.

<list>.count(x) Returns the number of occurrences of x in list.

<list>.remove(x) Deletes the first occurrence of x in list.

<list>.pop(i) Deletes the ith element of the list and returns its value.

Python Programming, 2/e 23

List Operations
>>> lst = [3, 1, 4, 1, 5, 9]
>>> lst.append(2)
>>> lst
[3, 1, 4, 1, 5, 9, 2]
>>> lst.sort()
>>> lst
[1, 1, 2, 3, 4, 5, 9]
>>> lst.reverse()
>>> lst
[9, 5, 4, 3, 2, 1, 1]
>>> lst.index(4)
2
>>> lst.insert(4, "Hello")
>>> lst
[9, 5, 4, 3, 'Hello', 2, 1, 1]
>>> lst.count(1)s
2
>>> lst.remove(1)
>>> lst
[9, 5, 4, 3, 'Hello', 2, 1]
>>> lst.pop(3)
3
>>> lst
[9, 5, 4, 'Hello', 2, 1]

Python Programming, 2/e 24

List Operations
n Most of these methods don’t return a

value – they change the contents of the
list in some way.

n Lists can grow by appending new items,
and shrink when items are deleted.
Individual items or entire slices can be
removed from a list using the del
operator.

Python Programming, 2/e 25

List Operations
n >>> myList=[34, 26, 0, 10]

>>> del myList[1]
>>> myList
[34, 0, 10]
>>> del myList[1:3]
>>> myList
[34]

n del isn’t a list method, but a built-in
operation that can be used on list
items.

Python Programming, 2/e 26

List Operations
n Basic list principles

n A list is a sequence of items stored as a
single object.

n Items in a list can be accessed by indexing,
and sublists can be accessed by slicing.

n Lists are mutable; individual items or entire
slices can be replaced through assignment
statements.

Python Programming, 2/e 27

List Operations
n Lists support a number of convenient and

frequently used methods.
n Lists will grow and shrink as needed.

Python Programming, 2/e 28

Statistics with Lists
n One way we can solve our statistics

problem is to store the data in lists.
n We could then write a series of

functions that take a list of numbers
and calculates the mean, standard
deviation, and median.

n Let’s rewrite our earlier program to use
lists to find the mean.

Python Programming, 2/e 29

Statistics with Lists
n Let’s write a function called
getNumbers that gets numbers from
the user.
n We’ll implement the sentinel loop to get

the numbers.
n An initially empty list is used as an

accumulator to collect the numbers.
n The list is returned once all values have

been entered.

Python Programming, 2/e 30

Statistics with Lists
def getNumbers():

nums = [] # start with an empty list

sentinel loop to get numbers
xStr = input("Enter a number (<Enter> to quit) >> ")
while xStr != "":

x = eval(xStr)
nums.append(x) # add this value to the list
xStr = input("Enter a number (<Enter> to quit) >> ")

return nums

n Using this code, we can get a list of
numbers from the user with a single
line of code:
data = getNumbers()

Python Programming, 2/e 31

Statistics with Lists
n Now we need a function that will

calculate the mean of the numbers in a
list.
n Input: a list of numbers
n Output: the mean of the input list

n def mean(nums):
sum = 0.0
for num in nums:

sum = sum + num
return sum / len(nums)

Python Programming, 2/e 32

Statistics with Lists
n The next function to tackle is the

standard deviation.
n In order to determine the standard

deviation, we need to know the mean.
n Should we recalculate the mean inside of
stdDev?

n Should the mean be passed as a parameter
to stdDev?

Python Programming, 2/e 33

Statistics with Lists
n Recalculating the mean inside of
stdDev is inefficient if the data set is
large.

n Since our program is outputting both
the mean and the standard deviation,
let’s compute the mean and pass it to
stdDev as a parameter.

Python Programming, 2/e 34

Statistics with Lists
n def stdDev(nums, xbar):

sumDevSq = 0.0
for num in nums:

dev = xbar - num
sumDevSq = sumDevSq + dev * dev

return sqrt(sumDevSq/(len(nums)-1))

n The summation from the formula is
accomplished with a loop and accumulator.

n sumDevSq stores the running sum of the
squares of the deviations.

Python Programming, 2/e 35

Statistics with Lists
n We don’t have a formula to calculate the

median. We’ll need to come up with an
algorithm to pick out the middle value.

n First, we need to arrange the numbers in
ascending order.

n Second, the middle value in the list is the
median.

n If the list has an even length, the median is
the average of the middle two values.

Python Programming, 2/e 36

Statistics with Lists
n Pseudocode -

sort the numbers into ascending order
if the size of the data is odd:

median = the middle value
else:

median = the average of the two middle values
return median

Python Programming, 2/e 37

Statistics with Lists
def median(nums):

nums.sort()
size = len(nums)
midPos = size // 2
if size % 2 == 0:

median = (nums[midPos] + nums[midPos-1]) / 2
else:

median = nums[midPos]
return median

Python Programming, 2/e 38

Statistics with Lists
n With these functions, the main program

is pretty simple!
n def main():

print("This program computes mean, median and standard deviation.")

data = getNumbers()
xbar = mean(data)
std = stdDev(data, xbar)
med = median(data)

print("\nThe mean is", xbar)
print("The standard deviation is", std)
print("The median is", med)

Python Programming, 2/e 39

Statistics with Lists
n Statistical analysis routines might come

in handy some time, so let’s add the
capability to use this code as a module
by adding:
if __name__ == '__main__': main()

Python Programming, 2/e 40

Lists of Objects
n All of the list examples we’ve looked at

so far have involved simple data types
like numbers and strings.

n We can also use lists to store more
complex data types, like our student
information from chapter ten.

Python Programming, 2/e 41

Lists of Objects
n Our grade processing program read

through a file of student grade
information and then printed out
information about the student with the
highest GPA.

n A common operation on data like this is
to sort it, perhaps alphabetically,
perhaps by credit-hours, or even by
GPA.

Python Programming, 2/e 42

Lists of Objects
n Let’s write a program that sorts

students according to GPA using our
Sutdent class from the last chapter.

n Get the name of the input file from the user
Read student information into a list
Sort the list by GPA
Get the name of the output file from the user
Write the student information from the list into a file

Python Programming, 2/e 43

Lists of Objects
n Let’s begin with the file processing. The

following code reads through the data file
and creates a list of students.

n def readStudents(filename):
infile = open(filename, 'r')
students = []
for line in infile:

students.append(makeStudent(line))
infile.close()
return students

n We’re using the makeStudent from the gpa
program, so we’ll need to remember to
import it.

Python Programming, 2/e 44

Lists of Objects
n Let’s also write a function to write the list of

students back to a file.
n Each line should contain three pieces of

information, separated by tabs: name, credit
hours, and quality points.

n def writeStudents(students, filename):
students is a list of Student objects
outfile = open(filename, 'w')
for s in students:

print((s.getName(),s.getHours(),s.getQPoints(),
sep="\t", file=outfile)

outfile.close()

Python Programming, 2/e 45

Lists of Objects
n Using the functions readStudents and
writeStudents, we can convert our
data file into a list of students and then
write them back to a file. All we need to
do now is sort the records by GPA.

n In the statistics program, we used the
sort method to sort a list of numbers.
How does Python sort lists of objects?

Python Programming, 2/e 46

Lists of Objects
n To make sorting work with our objects, we

need to tell sort how the objects should be
compared.

n Can supply a function to produce the key for
an object using <list>.sort(key=<somefunc>)

n To sort by GPA, we need a function that takes
a Student as parameter and returns the
student's GPA.

Python Programming, 2/e 47

Lists of Objects
n def use_gpa(aStudent):

return aStudent.gpa()

n We can now sort the data by calling
sort with the key function as a keyword
parameter.

n data.sort(key=use_gpa)

Python Programming, 2/e 48

Lists of Objects
n data.sort(key=use_gpa)

n Notice that we didn’t put ()’s after the
function name.

n This is because we don’t want to call
use_gpa, but rather, we want to send
use_gpa to the sort method.

Lists of Objects
n Actually, defining use_gpa was

unnecessary.
n The gpa method in the Student class is

a function that takes a student as a
parameter (formally, self) and returns
GPA.

n Can use it:
data.sort(key=Student.gpa)

Python Programming, 2/e 49

Python Programming, 2/e 50

Lists of Objects
gpasort.py
A program to sort student information into GPA

order.

from gpa import Student, makeStudent

def readStudents(filename):
infile = open(filename, 'r')
students = []
for line in infile:

students.append(makeStudent(line))
infile.close()
return students

def writeStudents(students, filename):
outfile = open(filename, 'w')
for s in students:

print(s.getName(), s.getHours(), s.getQPoints(),
sep="\t", file=outfile)

outfile.close()

def main():
print ("This program sorts student grade information

by GPA")
filename = input("Enter the name of the data file: ")
data = readStudents(filename)
data.sort(Student.gpa)
filename = input("Enter a name for the output file: ")
writeStudents(data, filename)
print("The data has been written to", filename)

if __name__ == '__main__':
main()

Python Programming, 2/e 51

Designing with
Lists and Classes
n In the dieView class from chapter ten,

each object keeps track of seven circles
representing the position of pips on the
face of the die.

n Previously, we used specific instance
variables to keep track of each, pip1,
pip2, pip3, …

Python Programming, 2/e 52

Designing with
Lists and Classes
n What happens if we try to store the circle

objects using a list?
n In the previous program, the pips were

created like this:
self.pip1 = self.__makePip(cx, cy)

n __makePip is a local method of the
DieView class that creates a circle centered
at the position given by its parameters.

Python Programming, 2/e 53

Designing with
Lists and Classes
n One approach is to start with an empty

list of pips and build up the list one pip
at a time.

n pips = []
pips.append(self.__makePip(cx-offset,cy-offset)
pips.append(self.__makePip(cx-offset,cy)
…
self.pips = pips

Python Programming, 2/e 54

Designing with
Lists and Classes
n An even more straightforward approach is to

create the list directly.
n self.pips = [self.__makePip(cx-offset,cy-offset),

self.__makePip(cx-offset,cy),
…
self.__makePip(cx+offset,cy+offset)
]

n Python is smart enough to know that this
object is continued over a number of lines,
and waits for the ‘]’.

n Listing objects like this, one per line, makes it
much easier to read.

Python Programming, 2/e 55

Designing with
Lists and Classes
n Putting our pips into a list makes many

actions simpler to perform.
n To blank out the die by setting all the

pips to the background color:
for pip in self.pips:

pip.setFill(self.background)

n This cut our previous code from seven
lines to two!

Python Programming, 2/e 56

Designing with
Lists and Classes
n We can turn the pips back on using the

pips list. Our original code looked like
this:

n self.pip1.setFill(self.foreground)
self.pip4.setFill(self.foreground)
self.pip7.setFill(self.foreground)

n Into this:
n self.pips[0].setFill(self.foreground)

self.pips[3].setFill(self.foreground)
self.pips[6].setFill(self.foreground)

Python Programming, 2/e 57

Designing with
Lists and Classes
n Here’s an even easier way to access the

same methods:
for i in [0,3,6]:

self.pips[i].setFill(self.foreground)

n We can take advantage of this
approach by keeping a list of which pips
to activate!

n Loop through pips and turn them all off
Determine the list of pip indexes to turn on
Loop through the list of indexes - turn on those pips

Python Programming, 2/e 58

Designing with
Lists and Classes
for pip in self.pips:

self.pip.setFill(self.background)
if value == 1:

on = [3]
elif value == 2:

on = [0,6]
elif value == 3:

on = [0,3,6]
elif value == 4:

on = [0,2,4,6]
elif value == 5:

on = [0,2,3,4,6]
else:

on = [0,1,2,3,4,5,6]
for i in on:

self.pips[i].setFill(self.foreground)

Python Programming, 2/e 59

Designing with
Lists and Classes
n We can do even better!
n The correct set of pips is determined by
value. We can make this process table-
driven instead.

n We can use a list where each item on the list
is itself a list of pip indexes.

n For example, the item in position 3 should be
the list [0,3,6] since these are the pips
that must be turned on to show a value of 3.

Python Programming, 2/e 60

Designing with
Lists and Classes
n Here’s the table-driven code:

onTable = [[], [3], [2,4], [2,3,4], [0,2,4,6],
[0,2,3,4,6], [0,1,2,4,5,6]]

for pip in self.pips:
self.pip.setFill(self.background)

on = onTable[value]
for i in on:

self.pips[i].setFill(self.foreground)

Python Programming, 2/e 61

Designing with
Lists and Classes
n onTable = [[], [3], [2,4], [2,3,4], [0,2,4,6], [0,2,3,4,6], [0,1,2,4,5,6]]

for pip in self.pips:
self.pip.setFill(self.background)

on = onTable[value]
for i in on:

self.pips[i].setFill(self.foreground)

n The table is padded with ‘[]’ in the 0 position,
since it shouldn’t ever be used.

n The onTable will remain unchanged through
the life of a dieView, so it would make
sense to store this table in the constructor
and save it in an instance variable.

Python Programming, 2/e 62

Designing with
Lists and Classes
dieview2.py
A widget for displaying the value of a die.
This version uses lists to simplify keeping track of

pips.

class DieView:
""" DieView is a widget that displays a graphical
representation

of a standard six-sided die."""

def __init__(self, win, center, size):
"""Create a view of a die, e.g.:

d1 = GDie(myWin, Point(40,50), 20)
creates a die centered at (40,50) having sides
of length 20."""

first define some standard values
self.win = win
self.background = "white" # color of die face
self.foreground = "black" # color of the pips
self.psize = 0.1 * size # radius of each pip
hsize = size / 2.0 # half of size
offset = 0.6 * hsize # distance from center to

outer pips

create a square for the face
cx, cy = center.getX(), center.getY()
p1 = Point(cx-hsize, cy-hsize)
p2 = Point(cx+hsize, cy+hsize)
rect = Rectangle(p1,p2)
rect.draw(win)
rect.setFill(self.background)

Create 7 circles for standard pip locations
self.pips = [self.__makePip(cx-offset, cy-offset),

self.__makePip(cx-offset, cy),
self.__makePip(cx-offset, cy+offset),
self.__makePip(cx, cy),
self.__makePip(cx+offset, cy-offset),
self.__makePip(cx+offset, cy),
self.__makePip(cx+offset, cy+offset)]

Create a table for which pips are on for each
value

self.onTable = [[], [3], [2,4], [2,3,4],
[0,2,4,6], [0,2,3,4,6], [0,1,2,4,5,6]]

self.setValue(1)

def __makePip(self, x, y):
"""Internal helper method to draw a pip at (x,y)"""
pip = Circle(Point(x,y), self.psize)
pip.setFill(self.background)
pip.setOutline(self.background)
pip.draw(self.win)
return pip

def setValue(self, value):
""" Set this die to display value."""
Turn all the pips off
for pip in self.pips:

pip.setFill(self.background)

Turn the appropriate pips back on
for i in self.onTable[value]:

self.pips[i].setFill(self.foreground)

Python Programming, 2/e 63

Designing with
Lists and Classes
n Lastly, this example showcases the

advantages of encapsulation.
n We have improved the implementation of the
dieView class, but we have not changed the set
of methods it supports.

n We can substitute this new version of the class
without having to modify any other code!

n Encapsulation allows us to build complex software
systems as a set of “pluggable modules.”

Python Programming, 2/e 64

Case Study: Python Calculator
n The new dieView class shows how lists can

be used effectively as instance variables of
objects.

n Our pips list and onTable contain circles and
lists, respectively, which are themselves
objects.

n We can view a program itself as a collection
of data structures (collections and objects)
and a set of algorithms that operate on those
data structures.

Python Programming, 2/e 65

A Calculator as an Object
n Let’s develop a program that implements a

Python calculator.
n Our calculator will have buttons for

n The ten digits (0-9)
n A decimal point (.)
n Four operations (+,-,*,/)
n A few special keys

n ‘C’ to clear the display
n ‘<-’ to backspace in the display
n ‘=’ to do the calculation

Python Programming, 2/e 66

A Calculator as an Object

Python Programming, 2/e 67

A Calculator as an Object
n We can take a simple approach to

performing the calculations. As buttons
are pressed, they show up in the
display, and are evaluated and
displayed when the = is pressed.

n We can divide the functioning of the
calculator into two parts: creating the
interface and interacting with the user.

Python Programming, 2/e 68

Constructing the Interface
n First, we create a graphics window.
n The coordinates were chosen to simplify the layout of

the buttons.
n In the last line, the window object is stored in an

instance variable so that other methods can refer to
it.

n def __init__(self):
create the window for the calculator
win = GraphWin("calculator")
win.setCoords(0,0,6,7)
win.setBackground("slategray")
self.win = win

Python Programming, 2/e 69

Constructing the Interface
n Our next step is to create the buttons,

reusing the button class.
n # create list of buttons

start with all the standard sized buttons
bSpecs gives center coords and label of buttons
bSpecs = [(2,1,'0'), (3,1,'.'),

(1,2,'1'), (2,2,'2'), (3,2,'3'), (4,2,'+'), (5,2,'-'),
(1,3,'4'), (2,3,'5'), (3,3,'6'), (4,3,'*'), (5,3,'/'),
(1,4,'7'), (2,4,'8'), (3,4,'9'), (4,4,'<-'),(5,4,'C')]

self.buttons = []
for cx,cy,label in bSpecs:

self.buttons.append(Button(self.win,Point(cx,cy),.75,.75,label))
create the larger = button
self.buttons.append(Button(self.win, Point(4.5,1), 1.75, .75, "="))
activate all buttons
for b in self.buttons:

b.activate()

n bspecs contains a list of button
specifications, including the center point of
the button and its label.

Python Programming, 2/e 70

Constructing the Interface
n Each specification is a tuple.
n A tuple looks like a list but uses ‘()’

rather than ‘[]’.
n Tuples are sequences that are

immutable.

Python Programming, 2/e 71

Constructing the Interface
n Conceptually, each iteration of the loop starts

with an assignment:
(cx,cy,label)=<next item from bSpecs>

n Each item in bSpecs is also a tuple.
n When a tuple of variables is used on the left

side of an assignment, the corresponding
components of the tuple on the right side are
unpacked into the variables on the left side.

n The first time through it’s as if we had:
cx,cy,label = 2,1,”0”

Python Programming, 2/e 72

Constructing the Interface
n Each time through the loop, another tuple

from bSpecs is unpacked into the variables
in the loop heading.

n These values are then used to create a
Button that is appended to the list of
buttons.

n Creating the display is simple – it’s just a
rectangle with some text centered on it. We
need to save the text object as an instance
variable so its contents can be accessed and
changed.

Python Programming, 2/e 73

Constructing the Interface
n Here’s the code to create the display
n bg = Rectangle(Point(.5,5.5), Point(5.5,6.5))

bg.setFill('white')
bg.draw(self.win)
text = Text(Point(3,6), "")
text.draw(self.win)
text.setFace("courier")
text.setStyle("bold")
text.setSize(16)
self.display = text

Python Programming, 2/e 74

Processing Buttons
n Now that the interface is drawn, we

need a method to get it running.
n We’ll use an event loop that waits for a

button to be clicked and then processes
that button.

n def run(self):
Infinite 'event loop' to process button clicks.
while True:

key = self.getButton()
self.processButton(key)

Python Programming, 2/e 75

Processing Buttons
n We continue getting mouse clicks until a

button is clicked.
n To determine whether a button has been

clicked, we loop through the list of buttons
and check each one.

n def getButton(self):
Waits for a button to be clicked and
returns the label of
the button that was clicked.
while True:

p = self.win.getMouse()
for b in self.buttons:

if b.clicked(p):
return b.getLabel() # method exit

Python Programming, 2/e 76

Processing Buttons
n Having the buttons in a list like this is a

big win. A for loop is used to look at
each button in turn.

n If the clicked point p turns out to be in
one of the buttons, the label of the
button is returned, providing an exit
from the otherwise infinite loop.

Python Programming, 2/e 77

Processing Buttons
n The last step is to update the display of

the calculator according to which button
was clicked.

n A digit or operator is appended to the
display. If key contains the label of the
button, and text contains the current
contents of the display, the code is:
self.display.setText(text+key)

Python Programming, 2/e 78

Processing Buttons
n The clear key blanks the display:

self.display.setText("")

n The backspace key strips off one
character:
self.display.setText(text[:-1])

n The equal key causes the expression to
be evaluated and the result displayed.

Python Programming, 2/e 79

Processing Buttons
n try:

result = eval(text)
except:

result = 'ERROR'
self.display.setText(str(result))

n Exception handling is necessary here to catch
run-time errors if the expression being
evaluated isn’t a legal Python expression. If
there’s an error, the program will display
ERROR rather than crash.

