Python Programming: An Introduction to Computer Science

Chapter 3

Computing with Numbers

Objectives

- To understand the concept of data types.
- To be familiar with the basic numeric data types in Python.
- To understand the fundamental principles of how numbers are represented on a computer.

Objectives (cont.)

- To be able to use the Python math library.
- To understand the accumulator program pattern.
- To be able to read and write programs that process numerical data.

Numeric Data Types

- The information that is stored and manipulated bu computers programs is referred to as data.
- There are two different kinds of numbers!
- $(5,4,3,6)$ are whole numbers - they don't have a fractional part
- (.25, .10, .05, .01) are decimal fractions

Numeric Data Types

- Inside the computer, whole numbers and decimal fractions are represented quite differently!
- We say that decimal fractions and whole numbers are two different data types.
- The data type of an object determines what values it can have and what operations can be performed on it.

Numeric Data Types

- Whole numbers are represented using the integer (int for short) data type.
- These values can be positive or negative whole numbers.

Numeric Data Types

- Numbers that can have fractional parts are represented as floating point (or float) values.
- How can we tell which is which?
- A numeric literal without a decimal point produces an int value
- A literal that has a decimal point is represented by a float (even if the fractional part is 0)

Numeric Data Types

- Python has a special function to tell us the data type of any value.

```
>>> type(3)
<class 'int'>
>>> type(3.1)
<class 'float'>
>>> type(3.0)
<class 'float'>
>>> myInt = 32
>>> type(myInt)
<class 'int'>
>>>
```


Numeric Data Types

- Why do we need two number types?
- Values that represent counts can't be fractional (you can't have $31 / 2$ quarters)
- Most mathematical algorithms are very efficient with integers
- The float type stores only an approximation to the real number being represented!
- Since floats aren't exact, use an int whenever possible!

Numeric Data Types

- Operations on ints produce ints, operations on floats produce floats (except for /).

```
>>> 3.0+4.0
7.0
>>> 3+4
7
>>> 3.0*4.0
12.0
>>> 3*4
12
>>> 10.0/3.0
3.3333333333333335
>>> 10/3
3.3333333333333335
>>> 10 // 3
3
>>> 10.0 // 3.0
3.0
```


Numeric Data Types

- Integer division produces a whole number.
- That's why $10 / / 3=3$!
- Think of it as 'gozinta', where $10 / / 3=3$ since 3 gozinta (goes into) 103 times (with a remainder of 1)
- $10 \% 3=1$ is the remainder of the integer division of 10 by 3.
- $a=(a / b)(b)+(a \% b)$

Using the Math Library

- Besides (+, -, *, /, //, **, \%, abs), we have lots of other math functions available in a math library.
- A library is a module with some useful definitions/functions.

Using the Math Library

- Let's write a program to compute the roots of a quadratic equation!

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- The only part of this we don't know how to do is find a square root... but it's in the math library!

Using the Math Library

- To use a library, we need to make sure this line is in our program:
import math
- Importing a library makes whatever functions are defined within it available to the program.

Using the Math Library

- To access the sqrt library routine, we need to access it as math.sqrt(x).
- Using this dot notation tells Python to use the sqrt function found in the math library module.
- To calculate the root, you can do discRoot $=$ math.sqrt(b*b $-4^{*} a * c$)

Using the Math Library

```
# quadratic.py
# A program that computes the real roots of a quadratic equation.
# Illustrates use of the math library.
# Note: This program crashes if the equation has no real roots.
import math # Makes the math library available.
def main():
    print("This program finds the real solutions to a quadratic")
    print()
    a, b, c = eval(input("Please enter the coefficients (a, b, c): "))
    discRoot = math.sqrt(b * b - 4 * a * c)
    root1 = (-b + discRoot) / (2* a)
    root2 = (-b - discRoot) / (2* a)
    print()
    print("The solutions are:", root1, root2 )
main()
```


Using the Math Library

This program finds the real solutions to a quadratic
Please enter the coefficients (a, b, c): 3, 4, -1
The solutions are: $0.215250437022-1.54858377035$

- What do you suppose this means?

This program finds the real solutions to a quadratic
Please enter the coefficients (a, b, c): 1, 2, 3
Traceback (most recent call last):
File "<pyshell\#26>", line 1, in -toplevelmain()
File "C:\Documents and Settings\Terry\My Documents\Teaching\W04\CS
120\Textbook\code\chapter3\quadratic.py", line 14, in main
discRoot $=$ math.sqrt($b * b-4 * a * c)$
ValueError: math domain error
>>>

Math Library

- If $a=1, b=2, c=3$, then we are trying to take the square root of a negative number!
- Using the sqrt function is more efficient than using **. How could you use ${ }^{* *}$ to calculate a square root?

Accumulating Results:

Factorial

- Say you are waiting in a line with five other people. How many ways are there to arrange the six people?
- $720-720$ is the factorial of 6 (abbreviated 6!)
- Factorial is defined as:
$n!=n(n-1)(n-2) \ldots$ (1)
- So, 6! = 6*5*4*3*2*1 = 720

Accumulating Results: Factorial

- How we could we write a program to do this?
- Input number to take factorial of, n Compute factorial of n, fact Output fact

Accumulating Results: Factorial

- How did we calculate 6!?
- 6*5 = 30
- Take that 30, and $30 * 4=120$
- Take that 120, and $120 * 3=360$
- Take that 360, and 360 * $2=720$
- Take that 720, and 720 * $1=720$

Accumulating Results: Factorial

- What's really going on?
- We're doing repeated multiplications, and we're keeping track of the running product.
- This algorithm is known as an accumulator, because we're building up or accumulating the answer in a variable, known as the accumulator variable.

Accumulating Results: Factorial

- The general form of an accumulator algorithm looks like this:
Initialize the accumulator variable
Loop until final result is reached update the value of accumulator variable

Accumulating Results: Factorial

- It looks like we’ll need a loop!
fact $=1$
for factor in $[6,5,4,3,2,1]$:
fact $=$ fact $*$ factor
- Let's trace through it to verify that this works!

Accumulating Results: Factorial

- Why did we need to initialize fact to 1 ? There are a couple reasons...
- Each time through the loop, the previous value of fact is used to calculate the next value of fact. By doing the initialization, you know fact will have a value the first time through.
- If you use fact without assigning it a value, what does Python do?

Accumulating Results: Factorial

- Since multiplication is associative and commutative, we can rewrite our program as:
fact = 1
for factor in $[2,3,4,5,6]$:
fact $=$ fact $*$ factor
- Great! But what if we want to find the factorial of some other number??

Accumulating Results: Factorial

- What does range(n) return? $0,1,2,3, \ldots, n-1$
- range has another optional parameter! range(start, n) returns start, start + 1, .., n-1
- But wait! There's more!
range(start, n, step) start, start+step, ..., n-1
- list(<sequence>) to make a list

Accumulating Results: Factorial

- Let's try some examples!
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(5,10))
[5, 6, 7, 8, 9]
>>> list(range(5,10,2))
[5, 7, 9]

Accumulating Results: Factorial

- Using this souped-up range statement, we can do the range for our loop a couple different ways.
- We can count up from 2 to n : range($2, \mathrm{n}+1$) (Why did we have to use $\mathrm{n}+1$?)
- We can count down from n to 2 : range(n, 1,-1)

Accumulating Results: Factorial

- Our completed factorial program:

 \# factorial.py\# Program to compute the factorial of a number
\# Illustrates for loop with an accumulator
def main():
n = eval(input("Please enter a whole number: "))
fact $=1$
for factor in range($\mathrm{n}, 1,-1$):
fact $=$ fact $*$ factor
print("The factorial of", n, "is", fact)
main()

The Limits of Int

- What is $100!?$

>>> main()
Please enter a whole number: 100
The factorial of 100 is
9332621544394415268169923885626670049071596826438162 1468592963895217599993229915608941463976156518286253 6979208272237582511852109168640000000000000000000000 00

- Wow! That's a pretty big number!

The Limits of Int

- Newer versions of Python can handle it, but...

Python 1.5.2 (\#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import fact
>>> fact.main()
Please enter a whole number: 13
13
12
11
10
9
8
7
6
5
4
Traceback (innermost last):
File "<pyshell\#1>", line 1, in ?
fact.main()
File "C:\PROGRA~1\PYTHON~1.2\fact.py", line 5, in main fact=fact*factor
OverflowError: integer multiplication

The Limits of Int

- What's going on?
- While there are an infinite number of integers, there is a finite range of ints that can be represented.
- This range depends on the number of bits a particular CPU uses to represent an integer value. Typical PCs use 32 bits.

The Limits of Int

- Typical PCs use 32 bits
- That means there are 2^{32} possible values, centered at 0 .
- This range then is -2^{31} to $2^{31}-1$. We need to subtract one from the top end to account for 0 .
- But our 100! is much larger than this. How does it work?

Handling Large Numbers

- Does switching to float data types get us around the limitations of ints?
- If we initialize the accumulator to 1.0, we get
>>> main()
Please enter a whole number: 15
The factorial of 15 is $1.307674368 \mathrm{e}+012$
- We no longer get an exact answer!

Handling Large Numbers: Long Int

- Very large and very small numbers are expressed in scientific or exponential notation.
- $1.307674368 \mathrm{e}+012$ means 1.307674368 * 10^{12}
- Here the decimal needs to be moved right 12 decimal places to get the original number, but there are only 9 digits, so 3 digits of precision have been lost.

Handling Large Numbers

- Floats are approximations
- Floats allow us to represent a larger range of values, but with lower precision.
- Python has a solution, expanding ints!
- Python Ints are not a fixed size and expand to handle whatever value it holds.

Handling Large Numbers

- Newer versions of Python automatically convert your ints to expanded form when they grow so large as to overflow.
- We get indefinitely large values (e.g. 100!) at the cost of speed and memory

Type Conversions

- We know that combining an int with an int produces an int, and combining a float with a float produces a float.
- What happens when you mix an int and float in an expression?
$x=5.0+2$
- What do you think should happen?

Type Conversions

- For Python to evaluate this expression, it must either convert 5.0 to 5 and do an integer addition, or convert 2 to 2.0 and do a floating point addition.
- Converting a float to an int will lose information
- Ints can be converted to floats by adding ". 0 "

Type Conversion

- In mixed-typed expressions Python will convert ints to floats.
- Sometimes we want to control the type conversion. This is called explicit typing.

Type Conversions

>>> float(22//5)
4.0
>>> int(4.5)
4
>>> int(3.9)
3
>>> round(3.9)
4
>>> round(3)
3

