
Python Programming, 2/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 7
Decision Structures

Python Programming, 2/e 2

Simple Decisions
n So far, we’ve viewed programs as

sequences of instructions that are
followed one after the other.

n While this is a fundamental
programming concept, it is not
sufficient in itself to solve every
problem. We need to be able to alter
the sequential flow of a program to suit
a particular situation.

Python Programming, 2/e 3

Simple Decisions
n Control structures allow us to alter this

sequential program flow.
n In this chapter, we’ll learn about

decision structures, which are
statements that allow a program to
execute different sequences of
instructions for different cases, allowing
the program to “choose” an appropriate
course of action.

decisions_01_simple.py
n simple decision with if

Python Programming, 2/e 4

Python Programming, 2/e 5

Forming Simple Conditions
n What does a condition look like?
n At this point, let’s use simple

comparisons.
n <expr> <relop> <expr>

n <relop> is short for relational operator

Python Programming, 2/e 6

Forming Simple Conditions
Python Mathematics Meaning

< < Less than
<= ≤ Less than or equal to
== = Equal to
>= ≥ Greater than or equal to
> > Greater than
!= ≠ Not equal to

Python Programming, 2/e 7

Forming Simple Conditions
n Notice the use of == for equality. Since

Python uses = to indicate assignment, a
different symbol is required for the
concept of equality.

n A common mistake is using = in
conditions!

Python Programming, 2/e 8

Forming Simple Conditions
n Conditions may compare either

numbers or strings.
n When comparing strings, the ordering is

lexigraphic, meaning that the strings
are sorted based on the underlying
Unicode. Because of this, all upper-case
letters come before lower-case letters.
(“Bbbb” comes before “aaaa”)

Python Programming, 2/e 9

Forming Simple Conditions
n Conditions are based on Boolean expressions,

named for the English mathematician George
Boole.

n When a Boolean expression is evaluated, it
produces either a value of true (meaning the
condition holds), or it produces false (it does
not hold).

n Some computer languages use 1 and 0 to
represent “true” and “false”.

Python Programming, 2/e 10

Forming Simple Conditions
n Boolean conditions are of type bool and the

Boolean values of true and false are
represented by the literals True and False.

>>> 3 < 4
True
>>> 3 * 4 < 3 + 4
False
>>> "hello" == "hello"
True
>>> "Hello" < "hello"
True

decisions_05_two_way.py
n two-way decision with if-else

Python Programming, 2/e 11

decisions_10_multi_way.py
n basic multi-way decision with if-elif-else

Python Programming, 2/e 12

decisions_15_multi_way_exte
nded.py
n extended multi-way decision with if-elif-

else

Python Programming, 2/e 13

decisions_20_lookup.py
n simple lookup coded inline

Python Programming, 2/e 14

decisions_25_lookup_in_functi
on.py
n simple lookup after refactored to

function

Python Programming, 2/e 15

decisions_30_nested_inline.py
n inline coding of complex decision using

nested if-else

Python Programming, 2/e 16

decisions_nested_in_function.
py
n complex decision using nested if-else
n decision logic factored into function
n main() used to run multiple test cases

Python Programming, 2/e 17

decisions_40_try.py
n Use try-except block to detect bad input

Python Programming, 2/e 18

decisions_45_raise.py
n Use try-except block with raise to catch

input error
n exception raised in called function

Python Programming, 2/e 19

Python Programming, 2/e 20

Study in Design: Max of Three
n Now that we have decision structures,

we can solve more complicated
programming problems. The negative is
that writing these programs becomes
harder!

n Suppose we need an algorithm to find
the largest of three numbers.

Python Programming, 2/e 21

Study in Design: Max of Three
def main():

x1, x2, x3 = eval(input("Please enter three values: "))

missing code sets max to the value of the largest

print("The largest value is", max)

Python Programming, 2/e 22

Strategy 1:
Compare Each to All
n This looks like a three-way decision,

where we need to execute one of the
following:
max = x1
max = x2
max = x3

n All we need to do now is preface each
one of these with the right condition!

Python Programming, 2/e 23

Strategy 1:
Compare Each to All
n Let’s look at the case where x1 is the largest.
n if x1 >= x2 >= x3:

max = x1

n Is this syntactically correct?
n Many languages would not allow this compound

condition
n Python does allow it, though. It’s equivalent to

x1 ≥ x2 ≥ x3.

Python Programming, 2/e 24

Strategy 1:
Compare Each to All
n Whenever you write a decision, there

are two crucial questions:
n When the condition is true, is executing

the body of the decision the right action to
take?

n x1 is at least as large as x2 and x3, so
assigning max to x1 is OK.

n Always pay attention to borderline values!!

Python Programming, 2/e 25

Strategy 1:
Compare Each to All

n Secondly, ask the converse of the first
question, namely, are we certain that this
condition is true in all cases where x1 is
the max?

n Suppose the values are 5, 2, and 4.
n Clearly, x1 is the largest, but does x1 ≥ x2 ≥

x3 hold?
n We don’t really care about the relative ordering

of x2 and x3, so we can make two separate
tests: x1 >= x2 and x1 >= x3.

Python Programming, 2/e 26

Strategy 1:
Compare Each to All
n We can separate these conditions with and!
if x1 >= x2 and x1 >= x3:

max = x1

elif x2 >= x1 and x2 >= x3:

max = x2
else:

max = x3

n We’re comparing each possible value against
all the others to determine which one is
largest.

Python Programming, 2/e 27

Strategy 1:
Compare Each to All
n What would happen if we were trying to

find the max of five values?
n We would need four Boolean

expressions, each consisting of four
conditions anded together.

n Yuck!

Python Programming, 2/e 28

Strategy 2: Decision Tree
n We can avoid the redundant tests of

the previous algorithm using a decision
tree approach.

n Suppose we start with x1 >= x2. This
knocks either x1 or x2 out of
contention to be the max.

n If the conidition is true, we need to see
which is larger, x1 or x3.

Python Programming, 2/e 29

Strategy 2: Decision Tree

Python Programming, 2/e 30

Strategy 2: Decision Tree
n if x1 >= x2:

if x1 >= x3:
max = x1

else:
max = x3

else:
if x2 >= x3:

max = x2
else

max = x3

Python Programming, 2/e 31

Strategy 2: Decision Tree
n This approach makes exactly two

comparisons, regardless of the ordering
of the original three variables.

n However, this approach is more
complicated than the first. To find the
max of four values you’d need if-
elses nested three levels deep with
eight assignment statements.

Python Programming, 2/e 32

Strategy 3:
Sequential Processing
n How would you solve the problem?
n You could probably look at three numbers

and just know which is the largest. But what
if you were given a list of a hundred
numbers?

n One strategy is to scan through the list
looking for a big number. When one is found,
mark it, and continue looking. If you find a
larger value, mark it, erase the previous
mark, and continue looking.

Python Programming, 2/e 33

Strategy 3:
Sequential Processing

Python Programming, 2/e 34

Strategy 3:
Sequential Processing
n This idea can easily be translated into

Python.
max = x1
if x2 > max:

max = x2
if x3 > max:

max = x3

Python Programming, 2/e 35

Strategy 3:
Sequential Programming
n This process is repetitive and lends

itself to using a loop.
n We prompt the user for a number, we

compare it to our current max, if it is
larger, we update the max value,
repeat.

Python Programming, 2/e 36

Strategy 3:
Sequential Programming
maxn.py
Finds the maximum of a series of numbers

def main():
n = eval(input("How many numbers are there? "))

Set max to be the first value
max = eval(input("Enter a number >> "))

Now compare the n-1 successive values
for i in range(n-1):

x = eval(input("Enter a number >> "))
if x > max:

max = x

print("The largest value is", max)

Python Programming, 2/e 37

Strategy 4:
Use Python
n Python has a built-in function called
max that returns the largest of its
parameters.

n def main():
x1, x2, x3 = eval(input("Please enter three values: "))
print("The largest value is", max(x1, x2, x3))

Python Programming, 2/e 38

Some Lessons
n There’s usually more than one way to solve a

problem.
n Don’t rush to code the first idea that pops

out of your head. Think about the design
and ask if there’s a better way to approach
the problem.

n Your first task is to find a correct
algorithm. After that, strive for clarity,
simplicity, efficiency, scalability, and
elegance.

Python Programming, 2/e 39

Some Lessons
n Be the computer.

n One of the best ways to formulate an
algorithm is to ask yourself how you would
solve the problem.

n This straightforward approach is often
simple, clear, and efficient enough.

Python Programming, 2/e 40

Some Lessons
n Generality is good.

n Consideration of a more general problem
can lead to a better solution for a special
case.

n If the max of n program is just as easy to
write as the max of three, write the more
general program because it’s more likely to
be useful in other situations.

Python Programming, 2/e 41

Some Lessons
n Don’t reinvent the wheel.

n If the problem you’re trying to solve is one
that lots of other people have encountered,
find out if there’s already a solution for it!

n As you learn to program, designing
programs from scratch is a great
experience!

n Truly expert programmers know when to
borrow.

