
Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 1

Chapter 14

How to use transactions
and locking

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 2

Objectives
Applied
• Given a set of SQL statements to be combined into a transaction,

write a script that begins, commits, and rolls back the transaction.

Knowledge
• Describe the use of transactions.
• Describe the use of save points.
• Describe the way locking helps prevent concurrency problems.
• Describe the way the transaction isolation level affects

concurrency problems and performance.
• Describe a deadlock.
• Describe three techniques that can reduce deadlocks.

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 3

A stored procedure with a transaction
DELIMITER //

CREATE PROCEDURE test()
BEGIN
 DECLARE sql_error TINYINT DEFAULT FALSE;

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SET sql_error = TRUE;

 START TRANSACTION;

 INSERT INTO invoices
 VALUES (115, 34, 'ZXA-080', '2015-01-18',
 14092.59, 0, 0, 3, '2015-04-18', NULL);

 INSERT INTO invoice_line_items
 VALUES (115, 1, 160, 4447.23, 'HW upgrade');

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 4

A stored procedure with a transaction (continued)
 INSERT INTO invoice_line_items
 VALUES (115, 2, 167, 9645.36, 'OS upgrade');

 IF sql_error = FALSE THEN
 COMMIT;
 SELECT 'The transaction was committed.';
 ELSE
 ROLLBACK;
 SELECT 'The transaction was rolled back.';
 END IF;
END//

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 5

When to use transactions
• When you code two or more INSERT, UPDATE, or DELETE

statements that affect related data.
• When you move rows from one table to another table by using

INSERT and DELETE statements.
• Whenever the failure of an INSERT, UPDATE, or DELETE

statement would violate data integrity.

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 6

A script that uses save points
USE ap;

START TRANSACTION;

SAVEPOINT before_invoice;

INSERT INTO invoices
VALUES (115, 34, 'ZXA-080', '2015-01-18',
 14092.59, 0, 0, 3, '2015-04-18', NULL);

SAVEPOINT before_line_item1;

INSERT INTO invoice_line_items
VALUES (115, 1, 160, 4447.23, 'HW upgrade');

SAVEPOINT before_line_item2;

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 7

A script that uses save points (continued)
INSERT INTO invoice_line_items
VALUES (115, 2, 167, 9645.36,'OS upgrade');

ROLLBACK TO SAVEPOINT before_line_item2;

ROLLBACK TO SAVEPOINT before_line_item1;

ROLLBACK TO SAVEPOINT before_invoice;

COMMIT;

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 8

Two transactions that retrieve and then modify
the data in the same row
Transaction A

START TRANSACTION;

UPDATE invoices SET credit_total = credit_total + 100
WHERE invoice_id = 6;

-- the SELECT statement in Transaction B
-- won't show the updated data
-- the UPDATE statement in Transaction B
-- will wait for transaction A to finish

COMMIT;

-- the SELECT statement in Transaction B
-- will display the updated data
-- the UPDATE statement in Transaction B
 will execute immediately

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 9

Transaction B
START TRANSACTION;

SELECT invoice_id, credit_total
FROM invoices WHERE invoice_id = 6;

UPDATE invoices SET credit_total = credit_total + 200
WHERE invoice_id = 6;

COMMIT;

How to test these transactions
• Open a separate connection for each transaction.
• Execute one statement at a time, alternating between the two

transactions.

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 10

The four types of concurrency problems
that locking can prevent
• Lost updates
• Dirty reads
• Nonrepeatable reads
• Phantom reads

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 11

The concurrency problems prevented
by each transaction isolation level
Isolation level Problems prevented
READ UNCOMMITTED None
READ COMMITTED Dirty reads
REPEATABLE READ Dirty reads, lost updates,

nonrepeatable reads
SERIALIZABLE All

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 12

The syntax of the SET TRANSACTION ISOLATION
LEVEL statement

SET {GLOBAL|SESSION} TRANSACTION ISOLATION LEVEL
 {READ UNCOMMITTED|READ COMMITTED|
 REPEATABLE READ|SERIALIZABLE}

Set the level to SERIALIZABLE
for the next transaction

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

Set the level to READ UNCOMMITTED
for the current session

SET SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

Set the level to READ COMMITTED
for all sessions

SET GLOBAL TRANSACTION ISOLATION LEVEL READ COMMITTED

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 13

UPDATE statements that illustrate deadlocking
Transaction A
START TRANSACTION;
UPDATE savings SET balance = balance - transfer_amount;
UPDATE checking SET balance = balance + transfer_amount;
COMMIT;

Transaction B (possible deadlock)
START TRANSACTION;
UPDATE checking SET balance = balance - transfer_amount;
UPDATE savings SET balance = balance + transfer_amount;
COMMIT;

Transaction B (prevents deadlocks)
START TRANSACTION;
UPDATE savings SET balance = balance + transfer_amount;
UPDATE checking SET balance = balance - transfer_amount;
COMMIT;

Murach's MySQL, C14 © 2015, Mike Murach & Associates, Inc. Slide 14

How to prevent deadlocks
• Don’t allow transactions to remain open for very long.
• Don’t use a transaction isolation level higher than necessary.
• Make large changes when you can be assured of nearly exclusive

access.
• Consider locking when coding your transactions.

