
J Multimodal User Interfaces (2010) 3: 197–213
DOI 10.1007/s12193-010-0044-2

O R I G I NA L PA P E R

Interactive design of multimodal user interfaces

Reducing technical and visual complexity

Werner A. König · Roman Rädle · Harald Reiterer

Received: 24 July 2009 / Accepted: 22 January 2010 / Published online: 19 February 2010
© OpenInterface Association 2010

Abstract In contrast to the pioneers of multimodal inter-
action, e.g. Richard Bolt in the late seventies, today’s re-
searchers can benefit from various existing hardware de-
vices and software toolkits. Although these development
tools are available, using them is still a great challenge, par-
ticularly in terms of their usability and their appropriateness
to the actual design and research process. We present a three-
part approach to supporting interaction designers and re-
searchers in designing, developing, and evaluating novel in-
teraction modalities including multimodal interfaces. First,
we present a software architecture that enables the unifica-
tion of a great variety of very heterogeneous device drivers
and special-purpose toolkits in a common interaction library
named “Squidy”. Second, we introduce a visual design en-
vironment that minimizes the threshold for its usage (ease-
of-use) but scales well with increasing complexity (ceiling)
by combining the concepts of semantic zooming with visual
dataflow programming. Third, we not only support the inter-
active design and rapid prototyping of multimodal interfaces
but also provide advanced development and debugging tech-
niques to improve technical and conceptual solutions. In ad-
dition, we offer a test platform for controlled comparative
evaluation studies as well as standard logging and analy-
sis techniques for informing the subsequent design iteration.
Squidy therefore supports the entire development lifecycle

W.A. König (�) · R. Rädle · H. Reiterer
Human-Computer Interaction Group, University of Konstanz,
Box D-73, Constance, Germany
e-mail: Werner.Koenig@uni-konstanz.de
url: http://hci.uni-konstanz.de

R. Rädle
e-mail: Roman.Raedle@uni-konstanz.de

H. Reiterer
e-mail: Harald.Reiterer@uni-konstanz.de

of multimodal interaction design, in both industry and re-
search.

Keywords Multimodal user interfaces · Post-WIMP user
interface · Natural interaction · Design environment ·
Zoomable user interface · Semantic zooming · Multimodal
interaction · Squidy

1 Introduction

With recent advances in computer vision, signal processing,
and sensor technology today’s researchers and interaction
designers have great opportunities to go far beyond the tra-
ditional user interface concepts and input devices. More nat-
ural and expressive interaction techniques, such as tangible
user interfaces, interactive surfaces, digital augmented pens,
speech input, and gestural interaction are available and tech-
nologically ready to be incorporated into the multimodal in-
terface of the future (see some examples in Fig. 1). However,
the actual utilization of these techniques for the design and
development of multimodal interfaces entails various critical
challenges that interaction designers and researchers have to
face.

In contrast to the design of traditional graphical user
interfaces, the development of multimodal interfaces in-
volves both software and hardware components [12]. How-
ever, conventional development environments (e.g. MS Vi-
sual Studio/.Net, Adobe Flash, Eclipse IDE) fall short of
supporting uncommon interaction modalities and appropri-
ate data processing (e.g. computer vision), not to mention
the handling of multipoint and multi-user applications (e.g.
for multi-touch interaction). As a consequence a broad va-
riety of very heterogeneous and specialized toolkits and
frameworks have evolved over the last few years such as

mailto:Werner.Koenig@uni-konstanz.de
http://hci.uni-konstanz.de
mailto:Roman.Raedle@uni-konstanz.de
mailto:Harald.Reiterer@uni-konstanz.de

198 J Multimodal User Interfaces (2010) 3: 197–213

Fig. 1 Diverse input devices for single-modality or multimodal in-
terfaces: (a) Physical game controller offer absolute pointing, motion
sensing and gesture-recognition to the end-user. (b) Digital pens build
upon users’ pre-existing knowledge and thus offer a very natural mode
of interaction e.g. for digital sketching and prototyping. (c) Multi-touch

surfaces augmented with physical tokens reduce the gap between real-
world and digital-world interaction. (d) Finger gestures provide a very
expressive and direct mode of interaction. (e) Well-known devices such
as an omnipresent laser pointer provide flexible input from any distance

Table 1 Interaction designers have to cope with very different environments for the same interaction modality, touch input

Hardware platform Microsoft Surface Custom-build table Apple iPhone HTC Hero

Form factor Table Table Mobile Mobile

Operating system Microsoft Windows Linux/Windows Mac OS X Android OS

Programming language C# C++ Objective-C Java

Software framework Surface SDK Touchlib iPhone SDK Android SDK

Apple iPhone SDK1, Microsoft Surface SDK2, GlovePIE3,
Processing4, NUI Group Touchlib5. They provide support
for specific interaction modalities, but are mostly restricted
to a dedicated hardware environment and entail further re-
quirements and dependencies. When using touch as input
for instance, the interaction designer has to cope with dif-
ferent hardware platforms, operating systems, programming
languages, and software frameworks (see Table 1). When
developing single-modality interfaces, this diversity can be
bypassed—at least in the short-run—by focusing on just
one specific device. But the combination of multiple de-
vices, e.g. for multimodal interaction involves further plat-

1Apple iPhone SDK, http://developer.apple.com/iphone/.
2Microsoft Surface SDK, http://www.microsoft.com/surface/.
3GlovePIE, http://carl.kenner.googlepages.com/glovepie/.
4Processing, http://processing.org/.
5NUIGroup Touchlib, http://nuigroup.com/touchlib/.

forms, devices, and frameworks, resulting in an unmanage-
able technical and mental complexity.

There are development environments that support at least
some of the more uncommon input devices and modal-
ities (e.g. physical turntables, mixing desks, multi-touch
surfaces and simple vision tracking). Two examples are
Max/MSP6 and vvvv7. Both are graphical development en-
vironments for music and video synthesis and are widely
used by artists to implement interactive installations. Their
popularity in the design and art community arises in par-
ticular from their graphical user interface concepts. Both
are based on the concept of visual dataflow programming
and utilize a cable-patching metaphor to lower the imple-
mentation threshold [24] for interactive prototyping. Users
arrange desired components spatially and route the dataflow
between the components by visually connecting pins instead

6Max/MSP, http://cycling74.com/products/maxmspjitter/.
7vvvv, http://vvvv.org/.

http://developer.apple.com/iphone/
http://www.microsoft.com/surface/
http://carl.kenner.googlepages.com/glovepie/
http://processing.org/
http://nuigroup.com/touchlib/
http://cycling74.com/products/maxmspjitter/
http://vvvv.org/

J Multimodal User Interfaces (2010) 3: 197–213 199

of textual programming. However, the visual representation
of each primitive variable, parameter, connection, and low-
level instruction (e.g. matrix multiplication) leads to com-
plex and scattered user interfaces, even for small projects.
vvvv offers the possibility of encapsulating consecutive in-
structions in so-called “subpatches”. This approach helps to
reduce the size of the visual dataflow graph, but the hier-
archical organization introduces additional complexity. In
contrast to the visual encapsulation in vvvv, the “external”
mechanism of Max/MSP supports the visual and technical
encapsulation of certain functionality in an external object
as a “black-box”. This mechanism offers high flexibility and
abstraction but requires low level programming in C. This
results in a higher threshold and lower interactivity of the de-
sign and development process, since changes have to be tex-
tually written and compiled in an external development envi-
ronment before the external object can be used in Max/MSP.

Basically, Max/MSP and vvvv show interesting user in-
terface concepts but they are focused on real-time audio
composing and 3D rendering and were not designed to
support the development of multimodal interfaces in gen-
eral. For that, interaction designers require not only a set
of ready-to-use interaction techniques and input devices
but also the possibility to physically develop and integrate
new interaction modalities and hardware devices. Hardware
toolkits such as Phidgets [11], Smart-Its [10] or iStuff [1] of-
fer a set of compatible microcontrollers, sensor devices and
software frameworks enabling rapid prototyping of physi-
cal input and output devices. However, the technical com-
plexity of the software frameworks requires advanced pro-
gramming and signal processing knowledge, in particular
when multiple devices are used in parallel. iStuff mobile [2]
combines the hardware toolkit iStuff with a visual program-
ming environment based on Apple’s Quartz Composer.8

This was originally designed to support the visual develop-
ment of interactive multimedia and 3D rendering. It shares
the cable-patching metaphor with the already discussed de-
velopment environments vvvv and Max/MSP. This combi-
nation of hardware toolkit and visual development environ-
ment facilitates fast iterations and rapid prototyping on mul-
tiple levels. However, it is restricted to the domain of mo-
bile phone interaction and limited in its functionality and
the type of input (e.g. no support for computer vision).

All of the aforementioned development environments
and toolkits support diverse devices and modalities but they
are not especially designed to support the design of multi-
modal interfaces. Here, multiple inputs have to be synchro-
nized (e.g. hand-gesture and speech), processed and com-
posed to a higher level command (e.g. moving an object).
There are few frameworks that address these requirements.

8Apple Quartz Composer, http://developer.apple.com/graphicsimaging/
quartzcomposer/.

ICARE [5] is a conceptual component model and a soft-
ware toolkit for the rapid development of multimodal inter-
faces. It provides two types of software components: the el-
ementary components, consisting of Device and Interaction
Language components used to develop a specific modality,
and the Composition components that combine the diverse
modalities. It was used for different use cases (e.g. design
of a multimodal flight cockpit) but it became apparent that
only a limited set of the defined components were really
generic [27] and the toolkit was not easily extensible [22].

Based on the experiences gained with ICARE, the open
source framework “OpenInterface” was developed by the
OpenInterface Project9 that is dedicated to multimodal in-
teraction. The OpenInterface framework is composed of
the OpenInterface Kernel, a component-based runtime plat-
form, and the OpenInterface Interaction Development Envi-
ronment (OIDE), a graphical development environment for
the design of multimodal interfaces [27]. In order to inte-
grate an existing input device as component into the Open-
Interface Kernel the component interface has to be speci-
fied in an dedicated XML-based CIDL description language
(Component Interface Description Language). This specifi-
cation can be semi-automatically generated from the source
code of the component by the OpenInterface platform. It
also generates C++ code to encapsulate the external binary
into a well defined programming interface [3]. Due to this
explicit description of the interface the encapsulated com-
ponent can be used in the graphical development environ-
ment OIDE. This uses a cable-patching metaphor similar
to Max/MSP, vvvv, and Quartz Composer in order to de-
fine the dataflow by combining the selected components vi-
sually. Lawson et al. [22] identified diverse shortcomings
of the OpenInterface OIDE and the introduced application
design process. A major issue is the limited focus and in-
flexible design of the components. The developers rather
focus on the design of their individual component than on
the application as a whole. This leads to an inflexible de-
sign of the components and the application in general that
hinders the reuse, extension and exchange of components
as well as the entire application. This inflexibility also re-
stricts interaction designers in exploring diverse alternatives,
which then impedes rapid prototyping and limits epistemic
production [18] of concrete prototypes. In order to address
the identified issues Lawson et al. introduced an all-in-one
prototyping workbench for multimodal application develop-
ment [22]. It is a combination of the OpenInterface Kernel
with an Eclipse Plugin as graphical editor that is named
SKEMMI. The editor is also based on the cable-patching
metaphor, but provides three levels of detail with respect to
the displayed information. The low-detail “workflow” level
reduces information and facilitates the initial sketching of

9OpenInterface Project, http://www.oi-project.org/.

http://developer.apple.com/graphicsimaging/quartzcomposer/
http://developer.apple.com/graphicsimaging/quartzcomposer/

200 J Multimodal User Interfaces (2010) 3: 197–213

the desired interaction techniques. In the “dataflow” level
where all details for the routing of the dataflow are rep-
resented, the user selects, arranges and logically links the
components without the need to route and connect every sin-
gle pin. In a third-level, the “component” level, only a spe-
cific component with its input and output pins is visualized
and the user is able to tailor the component’s interface (e.g.
changing the port attributes and parameters). SKEMMI pro-
vides also an alternative source code editor view that allows
for changes of the component or its interface programmat-
ically. The three-layer approach helps to control the visual
and functional complexity of the components, but there is no
higher-level abstraction concept (e.g. hierarchical pipelines
or semantic zooming). If the designed multimodal interface
incorporates multiple devices and various signal processing
components, the SKEMMI user interface gets increasingly
crowded. The geometric zoom of the user interface is not a
solution for the complexity issue since it just changes the
size of the displayed information but not the information
representation itself.

To sum up, there are only very few frameworks that sup-
port the design of multimodal interfaces. However, they ei-
ther provide a limited range of interaction modalities or are
hardly extensible regarding the platform, the components or
the visual user interface. The OIDE or the SKEMMI graphi-
cal editors seem very promising, but the complexity issue is
critical in real world projects. Moreover, all of the discussed
development environments focus mainly on rapid prototyp-
ing and the early steps of iterative design. None of them
provide tool-support for the empirical evaluation of the de-
signed interfaces (e.g. ISO 9241-9 tapping tasks and suit-
able data-logging). All of the graphical development envi-
ronments utilize the cable-patching metaphor in a similar
way in order to connect input and output pins. However,
the dataflow programming could be more powerful with-
out losing its simplicity. Furthermore, they still require a
deep understanding of the underlying technology on behalf
of the designers, since they have to understand and route
each primitive variable/data item even when using “black-
box” modules.

In the following, we present our Squidy Interaction Li-
brary, which contributes on different levels:

– The software architecture: Squidy enables the unification
of heterogeneous devices and components in a common
library. The architecture is designed to provide great flex-
ibility, simple extension, high independency and fast par-
allel processing.

– The visual development environment: Squidy enables the
interactive design and configuration of multimodal inter-
faces for interaction designers and researchers. The user
interface concept is designed to provide a low threshold
(ease-of-learn) and high ceiling (high functionality) and
scales well with increasing complexity.

– Tool-support for the entire development lifecycle: Besides
the visual design and configuration for rapid prototyping,
Squidy also provides advanced development and evalua-
tion techniques for iterative design.

After giving a short conceptual overview in the next section,
we will discuss the software architecture in Sect. 2.1 and
afterwards describe the user interface concept in detail in
Sect. 2.2. In Sect. 3 we will show the appropriateness of
our solution to the actual design and research process in the
context of a variety of real world projects.

2 Squidy interaction library

We introduce the Squidy Interaction Library, which unifies
a great variety of device toolkits and frameworks in a com-
mon library and provides an integrated user interface for vi-
sual dataflow management as well as device and data-filter
configuration. Squidy thereby hides the complexity of the
technical implementation from the user by providing a sim-
ple visual language and a collection of ready-to-use devices,
filters and interaction techniques. This facilitates rapid pro-
totyping and fast iterations for the design and development.
However, if more functionality and profound customizations
are required, the visual user interface reveals more detailed
information and advanced operations on demand by using
the concept of semantic zooming. Thus, users are able to
adjust the complexity of the visual user interface to their
current needs and knowledge (ease of learning).

The basic concept (see Sect. 2.2 for a more detailed dis-
cussion) that enables the visual definition of the dataflow
between the input and output is based on a pipe-and-filter
concept (see Fig. 2). By using this concept Squidy provides
a very simple, yet powerful visual language for designing
the interaction logic. Users can select an input device of
choice as source, e.g. a laser pointer, which is represented
by an input node in the visual user interface. They con-
nect it successively with filter nodes for data processing,
such as compensation for hand tremor or gesture recogni-
tion and route the refined data to an output node as sink. Ba-
sically, the user defines the logic of an interaction technique
by choosing the desired nodes from a collection (knowledge
base) and connecting them in an appropriate order assisted
by a heuristic-based node suggestion. The filter nodes are in-
dependent components that can transmit, change, or delete
data objects, and also generate additional ones (e.g. if a ges-
ture is recognized). The source and sink are specific drivers
that handle the input/output operations and map the individ-
ual data format of the devices to the generalized data types
defined in Squidy (see Fig. 4). The pipe-and-filter concept
provides also very technical advantages, since the encap-
sulation of functionality in independent “black-boxes” en-
sures information hiding, modifiability and high reuse by

J Multimodal User Interfaces (2010) 3: 197–213 201

Fig. 2 View of a simple pipeline in Squidy. The pipeline receives po-
sition, button and inertial data from a laser pointer, applies a Kalman
filter, a filter for change recognition and a filter for selection improve-
ment and finally emulates a standard mouse for interacting with con-
ventional applications. At the same time the data is sent via TUIO to

listening applications. The pipeline-specific functions and breadcrumb
navigation are positioned on top. The zoomable knowledge base, with
a selection of recommended input devices, filters, and output devices,
is located at the bottom

Fig. 3 Input node in Squidy representing an interactive laser pointer.
In order to reduce visual complexity the node-specific functions (ac-
tive/inactive, delete, duplicate, publish to knowledge base) and the un-
connected in and out ports are only shown if the pointer is within the
node

abstraction. The possibility for multiple input and output
connections offers a high degree of flexibility and the poten-
tial for massive parallel execution of concurrent nodes. In
our implementation each node generates its own thread and
processes its data independently as soon as it arrives. This
effectively reduces the processing delay that could have a
negative effect on the interaction performance.

The sink can be any output technique such as a vibrat-
ing motor for tactile stimulation or LEDs for visual feed-
back. Squidy also provides a mouse emulator as an output
node to offer the possibility of controlling standard WIMP-

Fig. 4 Data type hierarchy in Squidy based on primitive virtual de-
vices [30]. Any data processed in Squidy consists of single or com-
bined instances of these basic data types

applications with unconventional input devices. Multipoint
applications (e.g. for multi-touch surfaces or multi-user
environments) and remote connections between multiple
Squidy instances are supported by an input/output node that
transmits the interaction data either as TUIO messages [17]
or as basic OSC messages over the network. TUIO is a

202 J Multimodal User Interfaces (2010) 3: 197–213

widely used protocol for multipoint interaction based on the
more general OpenSound Control protocol (OSC), which is
a successor to the MIDI standard. By providing these stan-
dard interfaces for both input and output connections Squidy
supports the majority of multi-touch applications that have
recently become very popular in both research and industry.
Above these basic network interfaces Squidy also supports
and integrates more complex frameworks such as the Ap-
ple iPhone SDK, the Android SDK, the NUIGroup Touch-
lib, and the Microsoft Surface SDK. Users therefore bene-
fit from the particular functionalities and specific hardware
of all these techniques. Inside Squidy, however, they are
also able to define, control, evaluate, and reuse interaction
techniques independently from the hardware or the specific
framework. This flexibility results from the architecture uti-
lized and the generalized data types which will be explained
in more detail in the following section.

2.1 Software architecture

There are several frameworks and toolkits that provide
ready-to-use components for input devices and signal proces-
sing. Instead of connecting the components to pipelines
programmatically, most of these frameworks and toolkits
offer a basic language for controlling the dataflow visu-
ally (for example Max/MSP, vvvv, OIDE or SKEMMI).
Such a visual programming language reduces the tech-
nical threshold and complexity and aids users with lit-
tle or no programming experience. Also, the integration
of new modalities requires a fine grasp of the underly-
ing technology and thus is still a highly demanding task.
Although, extending a framework with new components
is only offered by a few of today’s common frameworks
such as ICARE [4] or the open source framework Open-
Interface (www.oi-project.org). However, integrating new
components into the frameworks requires either an addi-
tional programming effort or a dedicated definition of the
interface by a specific mark-up language. Basically this
means that a developer has to switch between different ap-
plications and programming languages while developing
a new interaction technique, increasing the mental work-
load.

2.1.1 Generic data types

In order to unify very heterogeneous devices, toolkits and
frameworks, we generalized the various kinds of input and
output data to a hierarchy of well-defined generic data types
(see Fig. 4) based on the primitive virtual devices intro-
duced by Wallace [30] and adapted to the work of Bux-
ton [6] and Card et al. [7]. Each generic data type consists
of a type-specific aggregation of atomic data types such as
numbers, strings or Boolean values bundled by their seman-
tic dependency. Simply adding a single connection between

two nodes in the visual user interface performs routing of
dataflow based on these generic data types.

This is quite a different approach when compared to some
of the aforementioned frameworks such as the ICARE [5]
and vvvv. These frameworks use atomic data types defined
in the particular programming language and assign them vi-
sually by connecting result values with function arguments
in their specific user interfaces. In order to use the function-
ality of a module in these frameworks, the user has to route
each of these low-level data types. Each x-, y-, and z-value
of a three-dimensional data type has to be routed separately,
for example. This is a procedure that needs additional effort
and can be error-prone, in particular when designing com-
plex interaction techniques. Furthermore, this approach re-
quires detailed knowledge about the functionality of each
node and its arguments. Routing low-level data types there-
fore puts high cognitive load on the user and leads to visu-
ally scattered user interfaces, particularly as the number of
connected nodes increases.

Squidy, on the other hand, does not require the designer
to visually define every value and programming step man-
ually. The interaction data is grouped in semantically bun-
dled generic data types as mentioned before. Squidy there-
fore offers the abstraction and simplicity of a higher-level
dataflow management and reduces the complexity for the
interaction designer without limiting the required function-
ality.

2.1.2 Squidy bridge

In order to achieve high extensibility and to simplify the in-
tegration of new devices and applications, we provide the
Squidy Bridges as common interfaces that support widely
used network protocols and also offer a specific native API if
high-performance data transmission is needed. For the pur-
pose of unifying data produced by different hardware de-
vices or applications (especially relevant for incorporating
multiple interaction modalities), the Squidy Bridges map the
diverse data originating from heterogeneous sources into the
generic data types. Thus, the internal data processing is har-
monized and completely separated from the diversity of the
external world. These bridges are able to handle data trans-
formations in both directions (e.g. from Apple iPhone into
the Squidy Core and from the Squidy Core to the applica-
tion running on the panoramic display and vice versa in or-
der to close the feedback loop e.g. activation of the vibrator
on the iPhone as tactile feedback of the application’s sta-
tus (see Fig. 5)). The interaction library already comes with
an OSC Bridge and a Native Interface Bridge that can be
used out-of-the-box. The OSC Bridge offers the possibil-
ity of directly connecting the various available devices and
toolkits using this communication protocol. Since OSC is
based on standard network protocols such as UDP or TCP,

http://www.oi-project.org

J Multimodal User Interfaces (2010) 3: 197–213 203

Fig. 5 This figure shows the usage scenario of an interactive and
multimodal environment to control an application running on a 360◦
panorama screen by using touch gestures and speech. The user inter-
acts with his fingers by touching the display of an Apple iPhone (1).
All recognized touches will be sent from an iPhone Client application
(OSC reference implementation running on the iPhone) to the OSC
Bridge of Squidy (2). The Squidy Core will process the incoming data
appropriately and sent it via the “special purpose bridge” (3) to the
360◦ application (4) to control a cursor object, which visually high-
lights the users current finger position. If the user has selected an inter-
active element with such a touching gesture the application (5) sends
a tactile feedback back to its connected bridge (6). The tactile feed-
back coming from the application will be forwarded through the OSC

Bridge (7) to the iPhone (8) where the vibration motor will be activated
to inform the user that he is hovering above an interactive element. Af-
ter the user has realized the tactile feedback and thus the interactive
element (9), he will use a spoken command to invoke an action on the
selected object. Therefore, the spoken command will be recognized by
the operating system’s speech recognition and then will be sent to the
“native interface bridge” (10). The appropriate spoken command will
have been processed by the Squidy Core (11) and transformed into an
action, which will be sent to the application to trigger object activa-
tion/manipulation (12). This multimodal scenario can be implemented
with Squidy using pluggable Squidy Bridges to receive data from dif-
ferent devices and a simple arrangement of nodes to process that in-
coming data

it is highly flexible and widely applicable, in particular for
mobile or ubiquitous computing. An OSC message consists
of several arguments such as the class name of the generic
data type, a unique identifier and data-type-specific parame-
ters. For instance, a message for a two-dimensional position
that may be sent from an Apple iPhone would contain the
Position2D data type as first argument, IMEI number as sec-
ond argument, x- and y-value as third and fourth argument
(Listing 1).

The flexibility gained from this network approach (e.g.
hardware and software independence, high scalability by

distributed computing (see Fig. 15)) entails a certain de-
lay that can have a negative effect on user input perfor-
mance [23]. Thus, for those purposes when performance is
more important than flexibility, the Native Interface Bridge
provides a straightforward Java and C/C++ API to map data
from individual devices to the generic data types in Squidy
programmatically. In contrast to the OSC Bridge, this tech-
nique increases throughput and reduces the delay to a mini-
mum.

For devices that support neither the OSC protocol nor the
Native Interface Bridge by default, Squidy provides client

204 J Multimodal User Interfaces (2010) 3: 197–213

Listing 1 OSC Message sent from an Apple iPhone contains four
arguments (finger touch)

/∗∗
∗ 1 . g e n e r i c d a t a t y p e
∗ 2 . IMEI as i d e n t i f i e r
∗ 3 . x- p o s i t i o n
∗ 4 . y- p o s i t i o n
∗ /
S t r i n g : de . ukn . h c i . s q u i d y . c o r e . d a t a .

P o s i t i o n 2 D
S t r i n g : 49 015420 323751 8
d o u b l e : 0 . 2 5
d o u b l e : 0 . 1 7

reference implementations (e.g. Squidy Client for iPhone
OS10 and for Android OS11 that can be deployed on these
devices, minimizing the effort and threshold of device inte-
gration. However, if the hardware is not able to communi-
cate via existing bridges natively, or if deployment of pro-
prietary software is not desired or is not possible due to
hardware restrictions, then users can add further bridges to
allow communication, for instance through special-purpose
protocol bridges such as the Virtual-Reality Peripheral Net-
work [29].

The support of multiple bridges as interfaces in combina-
tion with the device-independent generic data types enables
a separation of the data sources and the signal processing in
the Squidy Core. This offers a simple but flexible integra-
tion of new interaction techniques and modalities without
touching existing core functionality. As with ICARE [4] or
OpenInterface (www.oi-project.org), interaction techniques
designed with the user interface are completely decoupled
from the individual hardware or the connected applications.
Replacing devices (e.g. switching from the Apple iPhone to
the Microsoft Surface) therefore does not affect the applied
interaction techniques (e.g. “selection by dwelling”) or the
concrete application also connected to a Squidy Bridge. The
independent-bridge approach in combination with the gen-
eralization of data types enables the integration of very het-
erogeneous devices and toolkits in Squidy. Interaction tech-
niques that have been defined once can be reused multiple
times. Squidy thus reduces complexity by abstraction, offers
high flexibility and enables rapid prototyping.

2.1.3 Squidy core

All data resulting from (multimodal) user interaction is
bridged from devices to the Squidy Core. The core processes

10Squidy Client for iPhone OS: http://itunes.apple.com/app/squidy-
client/id329335928.
11Squidy Client for Android OS: http://sourceforge.net/projects/
squidy-lib/files/Components/Squidy-Client-for-Android-OS.

Listing 2 Methods to insert new or changed data objects into the
dataflow

/∗∗
∗ P u b l i s h e s 1 . . . n d a t a o b j e c t s t o enhance t h e
∗ d a t a f l o w s e m a n t i c s .
∗ /
p u b l i c vo i d p u b l i s h (I D a t a . . . d a t a) ;

/∗∗
∗ P u b l i s h e s a d a t a c o n t a i n e r t h a t c o n s i s t s o f
∗ an a r r a y o f d a t a o b j e c t s and a t imes t amp on
∗ which t h e d a t a c o n t a i n e r has been r e l e a s e d .
∗ /
p u b l i c vo i d p u b l i s h (I D a t a C o n t a i n e r

d a t a C o n t a i n e r) ;

this data automatically and in parallel without any program-
ming effort or further customizations. Users can define a fil-
ter chain (processing chain) using visual dataflow program-
ming provided by the visual user interface of the Squidy In-
teraction Library. In order to process the interaction data,
the Squidy Core provides a flexible API for manipulat-
ing (CRUD – Create/Read/Update/Delete) the dataflow. To
insert new or changed data objects into the dataflow, the
publish-method (Listing 2) of the API can be called at the
desired place in the pipeline. For instance, a gesture recog-
nizer that has detected a pre-defined gesture will publish
a new gesture object into the dataflow. These methods ac-
cept 1 . . . n instances of data objects or a data container that
consists of an array of data objects as well as a release
timestamp. The interface ‘IData’ ensures the compatibility
of the published data objects with the generic data types de-
fined in Squidy and specifies common methods and enumer-
ations.

Furthermore, the Squidy Interaction Library comes with
diverse off-the-shelf filters for signal processing, data fu-
sion, filtering and synchronization that provide the essential
functionalities for developing multimodal interfaces. Com-
pared to OIDE [27] or SKEMMI [22], Squidy incorporates
the facility to add new filters (including properties, algo-
rithms, logic and descriptions) without the need for switch-
ing to a different development environment. Therefore, the
source code is embedded and can be manipulated by users
directly. Changes made to the source code will be compiled
and integrated on-the-fly and the new or changed functional-
ity is thus instantly available to users. Each implementation
of a filter owns a data queue and a processing thread with-
out any effort on the developer’s part. The incoming data
will be enqueued until the processing thread dequeues data
to perform custom data processing automatically [5]. Thus,
the interaction library runs in a multi-threaded environment
that allows concurrent data processing by each filter with-
out blocking the complete process chain (e.g. a filter that is
currently waiting for a system resource does not block other

http://www.oi-project.org
http://itunes.apple.com/app/squidy-client/id329335928
http://itunes.apple.com/app/squidy-client/id329335928
http://sourceforge.net/projects/squidy-lib/files/Components/Squidy-Client-for-Android-OS
http://sourceforge.net/projects/squidy-lib/files/Components/Squidy-Client-for-Android-OS

J Multimodal User Interfaces (2010) 3: 197–213 205

Listing 3 The “preProcess” stub grants access to all data of a data
container

/∗∗
∗ D i v e r s e c o l l e c t i o n o f d a t a a c c e s s i b l e by
∗ t h i s method s t u b b e f o r e i n d i v i d u a l
∗ p r o c e s s i n g .
∗ /
p u b l i c I D a t a C o n t a i n e r p r e P r o c e s s (

I D a t a C o n t a i n e r d a t a C o n t a i n e r) ;

Listing 4 Processing single data objects of a specified type at a time

/∗∗
∗ P r o c e s s e s d a t a o f p a r t i c u l a r g e n e r i c d a t a
∗ t y p e (DATA_TYPE i s a p l a c e h o l d e r f o r
∗ t h o s e g e n e r i c d a t a t y p e s)
∗ /
p u b l i c I D a t a p r o c e s s (DATA_TYPE d a t a) ;

filters during that time). This system of self-contained fil-
ter components prevents side effects on the signal process-
ing and thus aids users to design consistent and reliable
interaction techniques. Users can intercept a filter’s inter-
nal processing by implementing simple pre-defined method
stubs similar to the concept of “Method Call Interception”.
The following method stubs reflect different points of en-
try that differ in the quantity and type of dequeued data
provided. The processing thread determines in a certain se-
quence whether a stub is implemented and then invokes this
stub using reflection.

In the “preProcess” stub (Listing 3), the collections of
data types grouped within a data container are passed to the
method’s implementation. This is an easy way to access all
data at a glance or iterate through the data collection man-
ually, e.g. to search for interaction patterns consisting of a
diverse set of data types concerning multimodal interaction.
Whenever it is sufficient to process one particular data in-
stance at a time, the ’process’ method stub is appropriate.
The code fragment in Listing 4 is a generic representation
of such a process method stub.

In the case of the “process” stub (Listing 4), the Squidy
Core iterates through the collection automatically. It there-
fore does not have to be done programmatically as in the
“preProcess” stub. Here, DATA_TYPE is the placeholder
for a generic data type (Sect. 2.1.1), offering a simple data-
type filter for the dataflow. The Squidy Core only passes in-
stances of that generic type to that method implementation.

Before the data collection is published to the next fil-
ter of the processing chain or bridged back to any device
or application, the data collection can be accessed through
the “postProcess” stub (Listing 5). An example of using this
post processing is the functionality to remove duplicate data
from the dataflow to reduce data-processing overhead.

Listing 5 All data objects of a data container are accessible through
the “postProcess” stub after individual data processing

/∗∗
∗ D i v e r s e c o l l e c t i o n o f d a t a a c c e s s i b l e by
∗ t h i s method s t u b a f t e r i n d i v i d u a l
∗ p r o c e s s i n g .
∗ /
p u b l i c I D a t a C o n t a i n e r p o s t P r o c e s s (

I D a t a C o n t a i n e r d a t a C o n t a i n e r) ;

The Squidy Core uses the Java Reflection mechanism to
determine if a filter has implemented such a data intercep-
tion and passes inquired data to the implementation auto-
matically. Therefore, no additional effort is required for in-
terface declaration, generation and compilation such as is
needed for the CIDL used by the OpenInterface framework
(www.oi-project.org). This flexibility of the Squidy Core to
quickly integrate or modify filter techniques provides the ca-
pability often needed to rapidly and iteratively prototype in-
teractive and multimodal interfaces.

Heterogeneous devices and toolkits can be easily tied
to the Squidy Interaction Library using existing Squidy
Bridges (OSC Bridge, Native Interface Bridge) or custom
bridge implementations (e.g. to integrate devices or toolk-
its communicating via special protocols). The Squidy Core
provides a multi-threaded environment to perform concur-
rent data processing and thus increases data throughput,
minimizes lag and enhances user’s experience while using
multimodal interaction. A suitable API supports develop-
ers to quickly implement new filters or change existing fil-
ters without the need for recompilation or repackaging. The
three-tier architecture covers usage by both interaction de-
signers and developers, assists them with appropriate tools
and thus reduces mental activity to a minimum.

Currently we run applications based on Microsoft .Net,
Windows Presentation Foundation and Surface SDK, Adobe
Flash and Flex, OpenGL for C++ or JOGL as well as
standard Java technology. The Squidy Bridges combined
with Squidy Client reference implementations provide var-
ious external and integrated drivers and toolkits. Currently,
Squidy supports the NUIGroup Touchlib, the Apple iPhone
SDK, the Android SDK and Microsoft Surface SDK for
multi-touch interaction, the ART DTrack and the Natural-
Point OptiTrack for finger gestures [9] and body-tracking,
the libGaze for mobile eye-tracking [14], the iPaper frame-
work for pen and paper-based interaction [28], the Microsoft
Touchless SDK for mid-air object tracking, the Phidgets API
for physical prototyping and self-developed components for
laser pointer interaction [19], GPU-accelerated low-latency
multi-touch tracking (SquidyVision), Nintendo Wii Remote
and tangible user interface (TUI) interaction.

206 J Multimodal User Interfaces (2010) 3: 197–213

Fig. 6 The Squidy Knowledge
Base is a searchable interface
for accessing all implemented
input device and filter nodes

2.2 User interface concept

The Squidy user interface concept is based on the concept
of zoomable user interfaces. It is aimed at providing differ-
ent levels of details and integrating different levels of ab-
straction so that frequent switching of applications can be
avoided. In the following subsections we will provide more
details about the different user interface concepts.

2.2.1 Knowledge base

Squidy provides a wide range of ready-to-use devices and
filter nodes stored in an online knowledge base that is acces-
sible within the Squidy user interface. An assortment is di-
rectly offered at the bottom of the pipeline view (see Fig. 2).
The selection and arrangement of the nodes are based on sta-
tistics of previous usage and thus give a hint of suitable part-
ners for the currently focused device or filter. This dynamic
suggestion may lead to a higher efficiency and also helps
novice users to limit the otherwise overwhelming number of
available nodes to a relevant subset. The user can directly
drag a desired node from the selection (bottom) to the de-
sign space for the pipeline (centre). If the desired node is
not part of the suggested subset, the user has the possibility
of accessing all nodes of the knowledge base by zooming
into the corresponding view at the bottom. Therein, dynamic
queries support the exploration (see Fig. 6). These are based
both on automatically generated metadata about each node
as well as user-generated tags.

2.2.2 Semantic zooming

In accordance with the assumption that navigation in infor-
mation spaces is best supported by tapping into our nat-
ural spatial and geographic ways of thinking [25], we use

a zoomable user-interface concept to navigate inside the
Squidy visual user interface. When zooming into a node,
additional information and corresponding functionalities ap-
pear, depending on the screen space available (semantic
zooming). Thus, the user is able to gradually define the level
of detail (complexity) according to the current need for in-
formation and functionality.

2.2.3 Interactive configuration & evaluation

In contrast to the related work, the user does not have to
leave the visual interface and switch to additional applica-
tions and programming environments in order to get ad-
ditional information, to change properties, or to generate,
change or just access the source code of device drivers and
filters. In Squidy, zooming into a node reveals all parame-
ters and enables the user to interactively adjust the values
at run-time (see Fig. 7). The changes take place immedi-
ately without any need for a restart, providing a direct rela-
tionship between user interaction and application feedback
and thereby maintaining causality, as Card et al. puts it [8].
This is especially beneficial for empirically testing a num-
ber of different parameters (e.g. adjusting the noise levels of
a Kalman filter) because of the possibility of directly com-
paring these settings without introducing any (e.g. tempo-
ral) side effects. This process of interactive configuration
and evaluation is much needed during the design of mul-
timodal interaction, especially when using uncommon inter-
action techniques and user interfaces. Squidy therefore fa-
cilitates fast development iterations.

2.2.4 Details on demand

Going beyond the access and manipulation of parameters,
Squidy provides illustrated information about the function-

J Multimodal User Interfaces (2010) 3: 197–213 207

Fig. 7 View of a zoomed
Kalman filter node with table of
parameters. Parameter changes
are applied immediately. Spatial
scrolling with overview window
(right) and temporal scrolling of
last changes (bottom) is
provided visually. Via automatic
zooming, the user can access
further information about the
node (Fig. 8) and the filter
source code (Fig. 9)

Fig. 8 Information view of the
Kalman filter node providing
illustrated descriptions about its
functionality

ality, usage and context of the node, and this information is
directly embedded in the node. By zooming into the infor-
mation view marked by a white “i” on a blue background
(see Fig. 7), the information is shown without losing the
context of the node. This information view (see Fig. 8) may
contain code documentation (e.g. automatically generated
by javadoc), user-generated content (e.g. from online re-
sources such as wikipedia.org or the Squidy-Wiki) or specif-
ically assembled documentation such as a product specifi-
cation consisting of textual descriptions, images or videos.
The interaction designer using Squidy does not need to open
a web browser and has to search for online documentations
in order to get the relevant information. Due to the seman-

tic zooming concept the user specifies her information need
implicitly by navigating in the zoomable user interface and
spatially filtering the information space.

2.2.5 Embedded code and on-the-fly compilation

The user even has the ability to access the source code
(see Fig. 9) of the node by semantic zooming. Thus, code
changes can be made directly inside the design environ-
ment. Assistants such as syntax highlighting or code com-
pletion support the user even further. If the user zooms out,
the code will be compiled and integrated on the fly, again
without needing to restart the system. Users may also gen-
erate new input and output devices or filters by adding an

208 J Multimodal User Interfaces (2010) 3: 197–213

Fig. 9 Source Code of the
corresponding device or filter
node is directly accessible by
semantic zooming.
Zooming-out leads to runtime
compilation of the source code
and live integration into the
current pipeline

empty node and augmenting it with applicable code. In or-
der to minimize the threshold for the first steps and to re-
duce the writing effort, the empty node already contains all
relevant method definitions for data handling and process-
ing. Therefore, only the desired algorithm has to be filled
in the suitable method body of the node. By zooming out
the new node is compiled and it is than immediately ready
for usage. In order to share the new node with the commu-
nity the user can publish it into the knowledge base (see
Publish-button in Figs. 3 and 2). The design rationale is not
to replace the classical development environments such as
Microsoft Visual Studio or Eclipse, but rather to integrate
some of their functionality directly into Squidy. Thereby, we
provide a unified environment that seamlessly integrates the
most relevant tools and functionalities for the visual design
and interactive development of multimodal interfaces.

2.2.6 Dataflow visualization—visual debugging

The visual design of an interaction technique requires a
profound understanding of the data flow and the semantics
of the designed pipeline. For instance, to detect and ana-
lyze interaction patterns such as gestures or multimodal in-
put, researchers or interaction designers should be able to
quickly get an overview of the interaction data flow during a
particular time span. In compliance with the pipe-and-filter
metaphor, we integrate a data-flow visualization at the centre
of each pipe (see Fig. 2). This simple yet powerful view (see
Fig. 10) visualizes the data flow through its corresponding
pipe with respect to its temporal and spatial attributes. At a
glance, users are able to inspect a massive amount of data,
as well as data occurring in parallel, according to its spatial
location and chronological order.

Direct manipulation of the time span allows the user to
adjust the range to their current need. The visual representa-
tion of data depends on the type that the data belongs to (e.g.
representation of a position in 2D differs from the represen-
tation of a gesture being recognized—see Fig. 10). Thus,
users benefit from the insight into the interaction data flow
by getting a better understanding of the effect of different
parameter settings.

Every node in Squidy operates strictly within its own
thread and therefore implies multi-threading and concur-
rent data processing without any additional effort. This al-
lows a higher bandwidth and enhances the data throughput.
Nevertheless, users may produce errors while implementing
nodes or use incorrect parameter settings. This can cause
side effects (e.g. array index out of bounds) that in conse-
quence may lead to an inaccurate interaction technique or
a local error (other nodes run in separate threads and are
therefore unaffected). Thus, the design environment sup-
plies each project, pipeline, node and pipe (in the follow-
ing we call these shapes) with a visual colour-coded outer-
glow effect (see Fig. 2) that represents the node’s current
status. Three distinct colours (green, red, grey) are uniquely
mapped to a class of conditions. A green glowing shape in-
dicates a properly operating node implementation running
underneath. Additionally, pipes possess a green illumination
when interaction data is flowing or has recently been flow-
ing through them. The red glow indicates that an error has
occurred during execution of node implementation (e.g. un-
handled exception—NullPointerException). Then, all con-
nected outgoing pipes to a defective pipeline or node are
given the same error colour-coding status to enhance error
detection and allow faster error correction. Shapes that are
not set as activated (not running) and pipes that currently do

J Multimodal User Interfaces (2010) 3: 197–213 209

Fig. 10 Dataflow visualization
showing the values of all
forwarded data objects of a pipe
within a defined time span

not have interaction data flowing through receive a grey illu-
mination. Thereby, without any need for interaction, the user
can perceive the status of the data flow between the nodes of
the pipeline.

Occasionally, researchers or interaction designers require
the capability to preclude parts of interaction data from be-
ing propagated to nodes (e.g. disabling the buttons pressed
on a laser pointer and instead using gestures to control an
application). Thus, a pipe provides two opportunities to nar-
row the set of interaction data flowing through it. The first
possibility for reducing the set of interaction data is before
data is visualized by the dataflow visualization. This allows
the user to visually debug designated types of data. The sec-
ond possibility is immediately after the data comes out of the
dataflow visualization. The user can visually debug the data
but nevertheless prevent it from being forwarded to nodes
connected downstream. Users are able to zoom into the data-
type hierarchy view (see Fig. 4) and select (which means
this data is forwarded) or deselect a data type by clicking
on it. In Fig. 4 all data types are selected and therefore have
a coloured background. A deselected data type would just
have a coloured border.

3 Squidy use cases

Over the last two years, we iteratively developed, used and
enhanced Squidy during the course of applying it in sev-
eral diverse projects. The starting point was the need for an

infrastructure that facilitates the design and the evaluation
of novel input devices and interaction techniques in multi-
modal and ubiquitous environments.

The first input device that we implemented with Squidy
was an interactive laser pointer. This enabled a flexible inter-
action with a large, high-resolution display such as the Pow-
erwall located at the University of Konstanz (221 inches,
8.9 megapixels) from any point and distance [19]. A ma-
jor issue of this interaction technique was the pointing im-
precision introduced by the natural hand tremor of the user
and the limited human hand-eye coordination [21]. Squidy
improved the design and research process by providing the
opportunity to interactively implement, change and empiri-
cally test diverse smoothing techniques without introducing
side effects. In an iterative approach the dataflow was vi-
sualized, the filter logic was adapted, the filter parameters
were optimized, and the resulting interaction technique was
finally evaluated based on a Fitts’ Law Tapping Test (ISO
9241-9), which is also provided in Squidy as a ready-to-use
component (see Fig. 12). Thus, Squidy supported the entire
development lifecycle, resulting in a very efficient and ef-
fective project progress.

In a follow-up project we specifically made use of the
separation of the three layers in Squidy since we could eas-
ily apply the laser pointer interaction to an artistic instal-
lation. This scenario utilized the laser pointer for interac-
tion but came with a very different display and visualiza-
tion technique. Surrounded by 360◦-satellite images of the
earth, visitors to the “Globorama” installation explored the

210 J Multimodal User Interfaces (2010) 3: 197–213

Fig. 11 Globorama installation on a 360◦ panoramic screen. On the left: top view of the panorama screen with 8 m in diameter. On the right:
Visitors exploring the Globorama installation with an interactive laser pointer

Fig. 12 Laser Pointer Interaction in front of a large high-resolution
display. Squidy facilitated the integration and evaluation of precision
enhancing and smoothing techniques, allowing the precise selection of
targets as small as 22 mm in diameter from a 3 m distance [21]

entire globe with the laser pointer and submerged at selected
points in geo-referenced pano-ramic photographs or web-
cam images of the respective location (see Fig. 11). The visi-
tors were able to physically move inside the 360◦ panoramic
screen (8 m in diameter, 8192 × 928 px) while dynamically
controlling zooming and panning and selecting interesting
areas [20]. We also augmented the laser pointer with a vi-
brator for tactile feedback and multiple RGB-LEDs for vi-
sual feedback on the device. The tactile feedback was given
whenever the visitor moved the cursor over an active el-
ement such as a geo-referenced photograph and the color
LEDs visualized the current status of the system. The “Glob-
orama” installation was exhibited at the ZKM Center for Art
and Media in Karlsruhe (2007) and at the ThyssenKrupp
Ideenpark 2008 in Stuttgart.

Squidy was also used to design functional prototypes for
personal information management with interactive televi-
sion sets [15]. For this application domain, the Nintendo
Wii, in its role as a standard input device for home enter-
tainment, was integrated into Squidy. Although the device,
the application, and the display were completely different
to the previous projects, the smoothing filters implemented

for the laser pointer could be applied to the Wii and proved

to be very beneficial, since both the Nintendo Wii and the

laser pointer share an important similarity in being absolute

pointing devices. Furthermore, the wiigee gesture recogni-

tion toolkit [26] was integrated into Squidy to enable three-

dimensional gestures with the Nintendo Wii. Although the

toolkit was originally designed for the Nintendo Wii, the

laser pointer can be used interchangeably, since Squidy uni-

fies the individual data types of the devices with the generic

data types commonly defined in Squidy.

In the context of Surface Computing, we conceptually

and technically combined multiple touch-sensitive displays

aiming to provide a more ubiquitous user experience based

on the naturalness and directness of touch interaction [16].

In this scenario, we integrated mobile handhelds (Apple

iPhone) as personal devices as well as shared multi-touch

tables (Microsoft Surface) and large high-resolution walls

(eyevis Cubes) for collaborative design and visual informa-

tion organization. In order to facilitate multimodal input and

context-aware applications, we integrated speech recogni-

tion, mobile eye tracking [14] and freehand gestures [9].

To further close the gap between the digital and the phys-

ical world, we enhanced this environment with digital pens

for interactive sketching and the possibility of interacting

with physical tokens on the diverse multi-touch displays (see

Fig. 14). All of these techniques were integrated in, and

driven by, Squidy and installed in our interaction lab known

as the Media Room (see Fig. 13). This physical infrastruc-

ture in combination with Squidy as the common software

infrastructure gives an ideal design and development envi-

ronment for researchers and interaction designers develop-

ing the user interfaces of the future.

J Multimodal User Interfaces (2010) 3: 197–213 211

4 Conclusion and future work

“Creating interactive systems is not simply the activity of
translating a pre-existing specification into code; there is sig-
nificant value in the epistemic experience of exploring alter-
natives” (Hartmann et al. [13]).

This statement is especially true for the design of mul-
timodal interfaces, since there is no well established body
of knowledge and no ready-to-use solution for multimodal
interfaces the designer can take advantage of. Interaction

Fig. 13 The Media Room is a lab environment which provides a va-
riety of input and output devices with different modalities and form
factors. Squidy serves as the basic technology to integrate these differ-
ent devices as well as to configure and evaluate them

designers need to physically explore and prototype new in-
teraction modalities and therefore require development en-
vironments that especially support the interactivity and the
dynamic of this creative development process. We presented
the Squidy Interaction Library that supports the interactive
design of multimodal user interfaces with a three-part con-
tribution. First, it provides a software architecture that offers
the flexibility needed for rapid prototyping and the possi-

Fig. 14 Multi-touch surfaces augmented with physical tokens used in
the context of blended museum

Fig. 15 This cloud shows how Squidy contributes to the development
lifecycle of multimodal interaction techniques. Each phase in the life-
cycle, whether it is the design and prototyping, the implementation and

testing, or the usability evaluation phase is surrounded by a variety of
Squidy features that support the interaction designer or developer dur-
ing this activity

212 J Multimodal User Interfaces (2010) 3: 197–213

bility to integrate a vast variety of heterogeneous input de-
vices and signal processing filters. Second, the Squidy vi-
sual user interface introduces a new user interface concept
that combines visual dataflow programming with semantic
zooming in order to reduce the visual and technical com-
plexity. This visual approach enables also a high degree of
interactivity that is further supported by the fluid integration
of code views, filter mechanisms and visualization tools.
Third, the Squidy Interaction Library does not only focus on
the rapid prototyping, but also provides advanced develop-
ment techniques and tool-support for empirical evaluation
of the developed interfaces. Figure 15 shows a high-level
feature cloud of the Squidy Interaction Library with respect
to the different development phases. The appropriateness of
Squidy to the actual design and research process was prac-
tically shown by the presented use cases. Additionally, we
will conduct qualitative usability tests in order to validate
and inform the design of the Squidy user interface concept.
Up to now, the Squidy Interaction Library has not provided
multi-user support. This, and the integration of version con-
trolling, will be future work.

The Squidy Interaction Library is free software and pub-
lished at http://hci.uni-konstanz.de/squidy/ under the licence
of the LGPL.

References

1. Ballagas R, Ringel M, Stone M, Borchers J (2003) Istuff: a phys-
ical user interface toolkit for ubiquitous computing environments.
In: CHI ’03: Proceedings of the SIGCHI conference on human
factors in computing systems. ACM, New York, pp 537–544

2. Ballagas R, Memon F, Reiners R, Borchers J (2007) Istuff mo-
bile: rapidly prototyping new mobile phone interfaces for ubiqui-
tous computing. In: CHI ’07: Proceedings of the SIGCHI confer-
ence on human factors in computing systems. ACM, New York,
pp 1107–1116

3. Benoit A, Bonnaud L, Caplier A, Jourde F, Nigay L, Serrano M,
Damousis I, Tzovaras D, Lawson J-YL (2007) Multimodal signal
processing and interaction for a driving simulator: Component-
based architecture. J Multimodal User Interfaces 1(1):49–58

4. Bouchet J, Nigay L (2004) Icare: a component-based approach
for the design and development of multimodal interfaces. In: CHI
’04: CHI ’04 extended abstracts on human factors in computing
systems. ACM, New York, pp 1325–1328

5. Bouchet J, Nigay L, Ganille T (2004) Icare software components
for rapidly developing multimodal interfaces. In: ICMI ’04: Pro-
ceedings of the 6th international conference on multimodal inter-
faces. ACM, New York, pp 251–258

6. Buxton W (1983) Lexical and pragmatic considerations of input
structures. SIGGRAPH Comput Graph 17(1):31–37

7. Card SK, Mackinlay JD, Robertson GG (1991) A morphological
analysis of the design space of input devices. ACM Trans Inf Syst
9(2):99–122

8. Card SK, Newell A, Moran TP (1983) The psychology of human-
computer interaction. Erlbaum Associates, Hillsdale

9. Foehrenbach S, König WA, Gerken J, Reiterer H (2008) Natural
interaction with hand gestures and tactile feedback for large, high-
res displays. In: MITH 08: Workshop on multimodal interaction
through haptic feedback, held in conjunction with AVI 08: inter-
national working conference on advanced visual interfaces

10. Gellersen H, Kortuem G, Schmidt A, Beigl M (2004) Physical
prototyping with smart-its. IEEE Pervasive Comput 3(3):74–82

11. Greenberg S, Fitchett C (2001) Phidgets: easy development of
physical interfaces through physical widgets. In: UIST ’01: Pro-
ceedings of the 14th annual ACM symposium on user interface
software and technology. ACM, New York, pp 209–218

12. Harper R, Rodden T, Rogers Y, Sellen A (2008) Being human:
human-computer interaction in the year 2020. Microsoft Research,
Cambridge

13. Hartmann B, Abdulla L, Mittal M, Klemmer SR (2007) Author-
ing sensor-based interactions by demonstration with direct ma-
nipulation and pattern recognition. In: CHI ’07: Proceedings of
the SIGCHI conference on human factors in computing systems.
ACM, New York, pp 145–154

14. Herholz S, Chuang LL, Tanner TG, Blthoff HH, Fleming R (2008)
Libgaze: Real-time gaze-tracking of freely moving observers for
wall-sized displays. In: VMV ’08: Proceedings of the 13th inter-
national workshop on vision, modeling, and visualization

15. Jetter H-C, Engl A, Schubert S, Reiterer H (2008) Zooming not
zapping: Demonstrating the ZOIL user interface paradigm for itv
applications. In: Adjunct proceedings of European interactive TV
conference, Salzburg, Austria, July 3–4, 2008. Demonstration Ses-
sion

16. Jetter H-C, König WA, Reiterer H (2009) Understanding and de-
signing surface computing with ZOIL and squidy. In: CHI 2009
workshop—multitouch and surface computing

17. Kaltenbrunner M, Bovermann T, Bencina R, Costanza E (2005)
Tuio—a protocol for table based tangible user interfaces. In: Pro-
ceedings of the 6th international workshop on gesture in human-
computer interaction and simulation

18. Kirsh D, Maglio P (1994) On distinguishing epistemic from prag-
matic action. Cognitive Sci 18(4):513–549

19. König WA, Bieg H-J, Schmidt T, Reiterer H (2007) Position-
independent interaction for large high-resolution displays. In:
IHCI’07: Proceedings of IADIS international conference on inter-
faces and human computer interaction 2007. IADIS Press, pp 117–
125

20. König WA, Böttger J, Völzow N, Reiterer H (2008) Laserpointer-
interaction between art and science. In: IUI ’08: Proceedings of the
13th international conference on Intelligent user interfaces. ACM,
New York, pp 423–424

21. König WA, Gerken J, Dierdorf S, Reiterer H (2009) Adaptive
pointing: Design and evaluation of a precision enhancing tech-
nique for absolute pointing devices. In: Interact 2009: Proceed-
ings of the twelfth IFIP conference on human-computer interac-
tion. Springer, Berlin, pp 658–671

22. Lawson J-YL, Al-Akkad A-A, Vanderdonckt J, Macq B (2009) An
open source workbench for prototyping multimodal interactions
based on off-the-shelf heterogeneous components. In: EICS’09:
Proceedings of the first ACM SIGCHI symposium on engineering
interactive computing. ACM, New York

23. MacKenzie IS, Ware C (1993) Lag as a determinant of human
performance in interactive systems. In: CHI ’93: Proceedings of
the INTERACT ’93 and CHI ’93 conference on human factors in
computing systems. ACM, New York, pp 488–493

24. Myers B, Hudson SE, Pausch R (2000) Past, present, and future of
user interface software tools. ACM Trans Comput-Hum Interact
7(1):3–28

25. Perlin K, Fox D (1993) Pad: an alternative approach to the com-
puter interface. In: SIGGRAPH ’93: Proceedings of the 20th an-
nual conference on computer graphics and interactive techniques.
ACM, New York, pp 57–64

26. Schlömer T, Poppinga B, Henze N, Boll S (2008) Gesture recog-
nition with a Wii controller. In: TEI ’08: Proceedings of the 2nd
international conference on Tangible and embedded interaction.
ACM, New York, pp 11–14

http://hci.uni-konstanz.de/squidy/

J Multimodal User Interfaces (2010) 3: 197–213 213

27. Serrano M, Nigay L, Lawson J-YL, Ramsay A, Murray-Smith R,
Denef S (2008) The openinterface framework: a tool for multi-
modal interaction. In: CHI ’08: Extended abstracts on human fac-
tors in computing systems. ACM, New York, pp 3501–3506

28. Signer B, Norrie MC (2007) Paperpoint: a paper-based presenta-
tion and interactive paper prototyping tool. In: TEI ’07: Proceed-
ings of the 1st international conference on tangible and embedded
interaction. ACM, New York, pp 57–64

29. Taylor RM, II, Hudson TC, Seeger A, Weber H, Juliano J, Helser
AT (2001) VRPN: a device-independent, network-transparent VR
peripheral system. In: VRST ’01: Proceedings of the ACM sympo-
sium on virtual reality software and technology. ACM, New York,
pp 55–61

30. Wallace VL (1976) The semantics of graphic input devices. SIG-
GRAPH Comput Graph 10(1):61–65

	Interactive design of multimodal user interfaces
	Abstract
	Introduction
	Squidy interaction library
	Software architecture
	Generic data types
	Squidy bridge
	Squidy core

	User interface concept
	Knowledge base
	Semantic zooming
	Interactive configuration & evaluation
	Details on demand
	Embedded code and on-the-fly compilation
	Dataflow visualization-visual debugging

	Squidy use cases
	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

