
Coding	Assignment	Instructions		
Chapter	10		
Interfaces	and	ArrayLists	
	
This	assignment	is	coordinated	with	the	demonstrations	that	I	have	recorded	in	the	Chapter	10	
Tutorial	Demos.		The	Transportation	Class	Model	has	been	revised	to	Version	5	(see	attached	
class	diagram).		The	following	describes	the	current	state	of	the	Version	5	Transportation	Class	
Model	and	code	changes	that	have	already	been	completed:	
	

1. The	VehicleDataSource	interface	has	been	defined	to	allow	for	multiple	plug-compatible	
implementations.	

2. The	ArrayBasedVehicleTestDataSource	class	has	been	modified	so	that	it	implements	
the	VehicleDataSourceInterface.	

3. The	ArrayBasedVehicleTestDataSourceTest	class	has	been	modified	to	test	the	
implementation	of	the	new	interface.		The	test	has	been	run	successfully.	

4. An	ArrayListBasedVehicleTestDataSource	class	has	been	created	that	uses	an	ArrayList	
to	store	the	test	vehicles.		Test	vehicles	have	been	constructed	for	Cars,	Motorcycles,	
and	Snowmobiles.	You	will	need	to	modify	this	class	to	create	test	data	for	Boats.	

5. An	ArrayListBasedVehicleTestDataSourceTest	class	has	been	created	to	test	the	new	
data	source	implementation	class.		A	test	has	run	successfully.		You	will	need	to	modify	
the	test	case	in	this	class	to	properly	test	for	the	presence	of	Boat	test	data.		The	test	
will	need	to	be	rerun.	

6. The	ResourceChargeable	interface	has	been	defined	so	that	it	can	mark	the	Snowmobile	
class.		This	interface	has	only	one	method,	determineResourceChargeAmount().	

7. The	Snowmobile	class	has	been	modified	so	that	it	implements	the	ResourceChargeable	
interface.	

8. The	SnowmobileTest	class	has	been	modified	so	that	it	tests	the	
determineResourceChargeAmount()	method.		The	test	has	been	rerun	and	it	has	passed.	

9. The	AnnualFeeClient	class	has	been	redesigned	and	renamed	BillingClient.		This	new	
client	is	responsible	for	billing	all	amounts	due	for	vehicles.		It	makes	use	of	the	
VehicleDataSource	interface.		By	toggling	comments	in	the	code,	this	class	can	make	use	
of	either	of	the	two	defined	VehicleDataSource	implementation	classes.		The	billing	code	
has	been	expanded	to	provide	better	formatting	of	the	lines	for	billing	amount	and	to	
provide	for	a	Total	Amount	Due	line	for	each	vehicle.		Code	has	been	added	to	check	if	a	
Vehicle	is	an	instance	of	ResourceChargeable.		When	a	such	a	vehicle	is	found,	a	charge	
line	is	generated	for	the	Resource	Charge	amount.	

	
	
Use	my	posted	copy	of	the	Chapter	10	Demo	project	as	your	starting	point.		Create	a	Chapter	10	
Coding	Assignment	Solutions	project.		Then,	complete	the	implementation	of	the	Version	5	
Transportation	Class	Model.		To	complete	this	work,	you	are	expected	to	do	the	following:	
	
	

1. Modify	the	ArrayListBasedTestDataSource	class	so	that	it	includes	5	instances	of	Boat	in	
the	test	data.	

2. Modify	the	ArrayListBasedTestDataSourceTest	class	so	that	the	test	case	expects	5	test	
Boats	to	be	included	in	the	data.		Retest.	



3. Run	the	BillingClient	class	to	demonstrate	that	it	properly	displays	all	test	data	including	
the	5	newly	added	Boats.	

	
4. Create	the	.java	file	for	the	LuxuryTaxable	interface.		This	interface	has	one	method:	

	
public	double	determineLuxuryTaxAmount();	
	

5. Modify	the	Boat	class.		Have	the	class	implement	the	LuxuryTaxable	interface.	Provide	
an	implementation	of	determineLuxuryTaxAount()	that	conforms	to	the	following	
requirements:	

	
Length	in	Feet	 	 Luxury	Tax	Amount	
<	30	 	 	 				 					0.00	
30	to	39	 	 	 100.00	
40	to	49	 	 	 200.00	
50 to	69	 	 	 500.00	
>	69		 	 	 	 750.00	

	
6. Modify	the	BoatTest	class	to	provide	appropriate	test	cases	for	

determineLuxuryTaxAmount().	Make	sure	that	a	test	case	is	provided	on	each	side	of	tax	
amount	boundary	(30,	31,	39,	40,	etc.).		Retest.	

	
7. Modify	the	BillingClient	class	so	that	it	checks	if	each	vehicle	is	an	instance	of	

LuxuryTaxable.		For	vehicles	that	qualify,	call	the	determineLuxuryTaxAmount()	method	
to	retrieve	the	amount,	add	this	amount	to	the	Total	Amount	Due,	and	print	a	charge	
line.		Do	not	print	a	luxury	tax	charge	line	if	the	luxury	tax	due	is	zero.		When	finished,	
run	this	class	and	inspect	the	output	to	confirm	that	the	test	Boats	have	been	charged	
appropriately.	

	
	

	
	

	



-engineDisplacementInCcs

+toString()
+equals()
+determineAnnualRegistrationFee()

Motorcycle

- length

+toString2()
+equals()
+determineAnnualRegistrationFee()
+determineLuxuryTaxAmount()

Boat

+main()

Bil l ingClient

-make
-model
-year
-color
-vehicleIdNumber

+toString()
+equals()
+determineAnnualRegistrationFee()

Vehicle

-fuelType

+toString()
+equals()
+determineAnnualRegistrationFee()

Car

-engineDisplacementInCcs

+toString()
+equals()
+determineAnnualRegistrationFee()
+determineResourceChargeAmount()

Snowmobile

+getNextVehicle()

<<Interface>>
VehicleDataSource

+determineLuxuryTaxAmount()

<<Interface>>
LuxuryTaxable

+determineResourceChargeAmount()

<<Interface>>
ResourceChargeable

+getNextVehicle()

ArrayBasedVehicleTestDataSource

+getNextVehicle()

ArrayListBasedTestDataSource

< < u s e > >< < u s e > >< < u s e > >
< < u s e > >

< < u s e > >
< < u s e > > < < u s e > > < < u s e > >

< < u s e > >< < u s e > >< < u s e > >

< < u s e > >

< < u s e > >

Powered By�Visual Paradigm Community Edition


	coding_assignment_instructions_chapter_10
	version 5 transportation class model

